Skip to main content

Lichens

  • Chapter
  • First Online:
Fungal Associations

Part of the book series: The Mycota ((MYCOTA,volume 9))

  • 533 Accesses

Abstract

Lichenized fungi initiate their symbiotic structures from microscopic stages after recognition of compatible algae. The partnerships ultimately emerge as complex macroscopic phenotypes which are unrivaled in the fungal kingdom by their resilience and durability. This chapter presents an overview of lichen symbioses and covers the morphology and systematics of the fungal phenotypes, as well as their associations with diverse photobionts. This is followed by a coarse overview of ecophysiology and the secondary chemistry. A special focus is given to the diversity of and the interactions with additional microorganisms. Finally, a few comments on the effects of pollution and environmental change point to the usefulness of lichens as bioindicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hameed M, Bertrand RL, Piercey-Normore MD, Sorensen JL (2016) Putative identification of the usnic acid biosynthetic gene cluster by de novo whole-genome sequencing of a lichen-forming fungus. Fungal Biol 120:306–316

    Article  CAS  PubMed  Google Scholar 

  • Ahmadjian V (1993) The lichen symbiosis. Wiley, New York

    Google Scholar 

  • Ahmadjian V, Jacobs JB (1981) Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature 289:169–172

    Article  Google Scholar 

  • Ahmadjian V, Russel LA, Hildreth KC (1980) Artificial reestablishment of lichens. I. Morphological interactions between the phycobionts of different lichens and the mycobionts Cladonia cristatella and Lecanora chrysoleuca. Mycologia 72:73–89

    Article  Google Scholar 

  • Anderson OR (2014) Microbial communities associated with tree bark foliose lichens: a perspective on their microecology. J Eukar Microbiol 61:364–370

    Article  Google Scholar 

  • Armaleo D, Chiou L (2021) Modeling in yeast how rDNA introns slow growth and increase desiccation tolerance in lichens. G3 11:jkab279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armaleo D, Sun X, Culberson C (2011) Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone. Mycologia 103:741–754

    Article  CAS  PubMed  Google Scholar 

  • Armaleo D, Müller O, Lutzoni F, Andrésson ÓS, Blanc G, Bode HB, Collart FR, Dal Grande F, Dietrich F, Grigoriev IV, Joneson S, Kuo A, Larsen PE, Logsdon JM Jr, Lopez D, Martin F, May SP, McDonald TR, Merchant SS, Miao V, Morin E, Oono R, Pellegrini M, Rubinstein N, Sanchez-Puerta MV, Savelkoul E, Schmitt I, Slot JC, Soanes D, Szövényi P, Talbot NJ, Veneault-Fourrey C, Xavier BB (2019) The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics 20:1–33

    Article  CAS  Google Scholar 

  • Arup U, Søchting U, Frödén P (2013) A new taxonomy of the family Teloschistaceae. Nordic J Bot 31:16–83

    Article  Google Scholar 

  • Aschenbrenner IA, Cardinale M, Berg G, Grube M (2014) Microbial cargo: do bacteria on symbiotic propagules reinforce the microbiome of lichens? Environ Microbiol 16:3743–3752

    Article  CAS  PubMed  Google Scholar 

  • Asplund J, Wardle DA (2017) How lichens impact on terrestrial community and ecosystem properties. Biol Rev 92:1720–1738

    Article  PubMed  Google Scholar 

  • Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plant 53:214–222

    Article  Google Scholar 

  • Bates ST, Cropsey GW, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77:1309–1314

    Article  CAS  PubMed  Google Scholar 

  • Beckett RP, Minibayeva FV, Laufer Z (2005) Extracellular reactive oxygen species production by lichens. Lichenologist 37:397–407

    Article  Google Scholar 

  • Berkeley MJ (1844) Notices of British fungi. Ann Mag Nat Hist 13:340–360

    Article  Google Scholar 

  • Blaha J, Baloch E, Grube M (2006) High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biol J Linn Soc 88:283–293

    Article  Google Scholar 

  • Blum OB, Kashevarov GP (1986) The DNA homologies as a proof of the legitimacy of the establishment of the lichen genus Lasallia Merat (Umbilicariaceae). Doklady Akademii Nauk Ukrainskoi SSR Seriya B 12:61–64

    Google Scholar 

  • Borgato L, Ertz D, Van Rossum F, Verbeken A (2022) The diversity of lichenized trentepohlioid algal (Ulvophyceae) communities is driven by fungal taxonomy and ecological factors. J Phycol 58(4):582–602

    Article  PubMed  Google Scholar 

  • Brunauer G, Muggia L, Stocker-Wörgötter E, Grube M (2009) A transcribed polyketide synthase gene from Xanthoria elegans. Mycol Res 113:82–92

    Article  CAS  PubMed  Google Scholar 

  • Candotto Carniel F, Fernandez-Marín B, Arc E, Craighero T, Laza JM, Incerti G, Tretiach M, Kranner I (2021) How dry is dry? Molecular mobility in relation to thallus water content in a lichen. J Exp Bot 72:1576–1588

    Article  PubMed  Google Scholar 

  • Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol 57:484–495

    Article  CAS  PubMed  Google Scholar 

  • Cardinale M, Vieira de Castro J Jr, Müller H, Berg G, Grube M (2008) In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol Ecol 66:63–71

    Article  CAS  PubMed  Google Scholar 

  • Cardinale M, Steinová J, Rabensteiner J, Berg G, Grube M (2012) Age, sun and substrate: triggers of bacterial communities in lichens. Environ Microbiol Rep 4:23–28

    Article  PubMed  Google Scholar 

  • Casano LM, del Campo EM, García-Breijo FJ, Reig-Armiñana J, Gasulla F, Del Hoyo A, Guéro A, Barreno E (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818

    Article  CAS  PubMed  Google Scholar 

  • Cengia Sambo M (1926) Ancora della polisimbiosi nei licheni ad alghe cianoficee. 1. Batteri simbionti. Atti Soc Ital Sci Nat Mus Civ Storia Nat Milano 64:191–195

    Google Scholar 

  • Cernava T, Erlacher A, Aschenbrenner IA, Krug L, Lassek C, Riedel K, Grube M, Berg G (2017) Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome 5:1–13

    Article  Google Scholar 

  • Cernava T, Aschenbrenner IA, Soh J, Sensen CW, Grube M, Berg G (2019) Plasticity of a holobiont: desiccation induces fasting-like metabolism within the lichen microbiota. ISME J 13:547–556

    Article  CAS  PubMed  Google Scholar 

  • Colesie C, Williams L, Büdel B (2017) Water relations in the soil crust lichen Psora decipiens are optimized via anatomical variability. Lichenologist 49:483–492

    Article  Google Scholar 

  • Conti ME (2008) Lichens as bioindicators of air pollution. WIT Transact State-of-the-art Sci Engin 30:111–162

    Article  Google Scholar 

  • Dal Grande F, Rolshausen G, Divakar PK, Crespo A, Otte J, Schleuning M, Schmitt I (2018) Environment and host identity structure communities of green algal symbionts in lichens. New Phytol 217:277–289

    Article  CAS  PubMed  Google Scholar 

  • Dal-Forno M, Lawrey JD, Sikaroodi M, Bhattarai S, Gillevet PM, Sulzbacher M, Lücking R (2013) Starting from scratch: evolution of the lichen thallus in the basidiolichen Dictyonema (Agaricales: Hygrophoraceae). Fungal Biol 117:584–598

    Article  CAS  PubMed  Google Scholar 

  • Darnajoux R, Zhang X, McRose DL, Miadlikowska J, Lutzoni F, Kraepiel AM, Bellenger JP (2017) Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: importance of molybdenum availability and implications for current biological nitrogen fixation estimates. New Phytol 213:680–689

    Article  CAS  PubMed  Google Scholar 

  • De Los Ríos A, Ascaso C, Grube M (2002a) Infection mechanisms of lichenicolous fungi studied by various microscopic techniques. Biblioth Lichenol 82:153–161

    Google Scholar 

  • De Los Ríos A, Ascaso C, Grube M (2002b) An ultrastructural, anatomical and molecular study of the lichenicolous lichen Rimularia insularis. Mycol Res 106:946–953

    Article  Google Scholar 

  • Demmig-Adams B, Maguas C, Adams WW, Meyer A, Kilian E, Lange OL (1990a) Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta 180:400–409

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW, Green TGA, Czygan FC, Lange OL (1990b) Differences in the susceptibility to light stress in two lichens forming a phycosymbiodeme, one partner possessing and one lacking the xanthophyll cycle. Oecologia 84:451–456

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Escandón D, Tagirdzhanova G, Vanderpool D, Allen CCG, Aptroot A, Češka O, Hawksworth DL, Huereca A, Knudsen K, Kocourková J, Lücking R, Resl P, Spribille T (2022) Genome-level analyses resolve an ancient lineage of symbiotic ascomycetes. Curr Biol 32:5209–5218

    Article  PubMed  Google Scholar 

  • Diederich P, Lawrey JD, Ertz D (2018) The 2018 classification and checklist of lichenicolous fungi, with 2000 non-lichenized, obligately lichenicolous taxa. Bryologist 121:340–425

    Article  Google Scholar 

  • Dietz S, Büdel B, Lange OL, Bilger W (2000) Transmittance of light through the cortex of lichens from contrasting habitats. Bibl Lichenol 75:171–182

    Google Scholar 

  • Du ZY, Zienkiewicz K, Vande Pol N, Ostrom NE, Benning C, Bonito GM (2019) Algal-fungal symbiosis leads to photosynthetic mycelium. elife 8:e47815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Article  CAS  Google Scholar 

  • Ellis CJ, Crittenden PD, Scrimgeour CM, Ashcroft CJ (2005) Translocation of 15N indicates nitrogen recycling in the mat-forming lichen Cladonia portentosa. New Phytol 168:423–434

    Article  CAS  PubMed  Google Scholar 

  • Ertz D, Guzow-Krzemińska B, Thor G, Łubek A, Kukwa M (2018) Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Sci Rep 8:1–14

    Article  CAS  Google Scholar 

  • Esseen PA, Ekström M, Grafström JBG, Palmquist K, Westerlund B, Stahl G (2022) Multiple drivers of large-scale decline in boreal forest canopies. Glob Change Biol 28:3293–3309

    Article  CAS  Google Scholar 

  • Eymann C, Lassek C, Wegner U, Bernhardt J, Fritsch OA, Fuch S, Otto A, Albrecht D, Schiefelbein U, Cernava T, Aschenbrenner I, Berg G, Grube M, Riedel K (2017) Symbiotic interplay of fungi, algae, and bacteria within the lung lichen Lobaria pulmonaria L. Hoffm. as assessed by state-of-the-art metaproteomics. J Prot Res 16:2160–2173

    Article  CAS  Google Scholar 

  • Farrant JM, Hilhorst HW (2021) What is dry? Exploring metabolism and molecular mobility at extremely low water contents. J Exp Bot 72:1507–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrar JF (1976) The lichen as an ecosystem: observation and experiment. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 385–406

    Google Scholar 

  • Fernández-Mendoz F, Fleischhacker A, Kopun T, Grube M, Muggia L (2017) ITS 1 metabarcoding highlights low specificity of lichen mycobiomes at a local scale. Mol Ecol 26:4811–4830

    Article  Google Scholar 

  • Fernández-Mendoza F, Domaschke S, García MA, Jordan P, Martín MP, Printzen C (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol Ecol 20:1208–1232

    Article  PubMed  Google Scholar 

  • Fernandez-Mendoza F, Strasser E, Frolov I, Vondrak J, Muggia L, Mayrhofer H, Gaya E, Grube M (2023) Introgressive descent and hypersexuality drive the evolution of sexual parasitism and morphological reduction in a fungal species complex. bioRxiv, 2023-01

    Google Scholar 

  • Ferraro LI (2004) Morphological diversity in the hyphophores of Gomphillaceae (Ostropales, lichenized Ascomycetes). Fungal Div 15:153–169

    Google Scholar 

  • Frank AB (1876) Über die biologischen Verhältnisse des Thallus einiger Krustenflechten. Cohn, Beitr Biol Pflanzen 2:123–200

    Google Scholar 

  • Friedl T (1989) Systematik und Biologie von Trebouxia (Microthamniales, Chlorophyta) als Phycobiont der Parmeliaceae (lichenisierte Ascomyceten). 218p. Doctoral thesis, Universität Bayreuth

    Google Scholar 

  • Gadea A, Fanuel M, Lamer A-CL, Boustie J, Rogniaux H, Charrier M, Devehat FL-L (2020) Mass spectrometry imaging of specialized metabolites for predicting lichen fitness and snail foraging. Plan Theory 9:70

    CAS  Google Scholar 

  • García-Plazaola JI, Esteban R, Fernández-Marín B, Kranner I, Porcar-Castell A (2012) Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. Photosynth Res 113:89–103

    Article  PubMed  Google Scholar 

  • Garg N, Zeng Y, Edlund A, Melnik AV, Sanchez LM, Mohimani H, Gurevich A, Miao V, Schiffler S, Lim YW, Luzzatto-Knaan T, Cai S, Rohwer F, Pevzner PA, Cichewicz RH, Alexandrov T, Dorrestein PC (2016) Spatial molecular architecture of the microbial community of a Peltigera lichen. mSystems 1:e00139–e00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Gargas A, Taylor JW (1992) Polymerase chain reaction (PCR) primers for amplifying and sequencing nuclear 18s rDNA from lichenized fungi. Mycologia 84:589–592

    Article  CAS  Google Scholar 

  • Gargas A, DePriest PT, Grube M, Tehler A (1995) Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268:1492–1495

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Benavent I, Pérez-Ortega S, de los Ríos A, Fernández-Mendoza F (2020) Amphitropical variation of the algal partners of Pseudephebe (Parmeliaceae, lichenized fungi). Symbiosis 82:35–48

    Article  CAS  Google Scholar 

  • Gasulla F, Barrasa JM, Casano LM, del Campo EM (2020) Symbiont composition of the basidiolichen Lichenomphalia meridionalis varies with altitude in the Iberian Peninsula. Lichenologist 52:17–26

    Article  Google Scholar 

  • González I, Ayuso-Sacido A, Anderson A, Genilloud O (2005) Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol Ecol 54:401–415

    Article  PubMed  Google Scholar 

  • González-Hourcade M, Braga MR, Del Campo EM, Ascaso C, Patiño C, Casano LM (2020) Ultrastructural and biochemical analyses reveal cell wall remodelling in lichen-forming microalgae submitted to cyclic desiccation–rehydration. Ann Bot 125:459–469

    Article  PubMed  Google Scholar 

  • Gostinčar C, Muggia L, Grube M (2012) Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses. Front Microbiol 3:390

    Article  PubMed  PubMed Central  Google Scholar 

  • Green TGA, Schroeter B, Kappen L, Seppelt RD, Maseyk K (1998) An assessment of the relationship between chlorophyll a fluorescence and CO2 gas exchange from field measurements on a moss and lichen. Planta 206:611–618

    Article  CAS  Google Scholar 

  • Green TGA, Nash TH, Lange OL (2008) Physiological ecology of carbon dioxide exchange. In: Nash TH (ed) Lichen biology. Cambridge University Press, New York, pp 152–181

    Chapter  Google Scholar 

  • Grube M, Arup U (2001) Molecular and morphological evolution in the Physciaceae (Lecanorales, lichenized Ascomycotina), with special emphasis on the genus Rinodina. Lichenologist 33:63–72

    Article  Google Scholar 

  • Grube M, Hawksworth DL (2007) Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycol Res 111:1116–1132

    Article  PubMed  Google Scholar 

  • Grube M, Kantvilas G (2006) Siphula represents a remarkable case of morphological convergence in sterile lichens. Lichenologist 38:241–249

    Article  Google Scholar 

  • Grube M, Cardinale M, de Castro JV, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3:1105–1115

    Article  PubMed  Google Scholar 

  • Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9:412–424

    Article  CAS  PubMed  Google Scholar 

  • Grube M, Muggia L, Baloch E, Hametner C, Stocker-Wörgötter E (2017) Symbioses of lichen-forming fungi with Trentepohlialean algae. In: Grube M, Seckbach J, Muggia L (eds) Algal and cyanobacteria symbioses. World Scientific, Hackensack, NJ, pp 85–110

    Chapter  Google Scholar 

  • Gustavs L, Schiefelbein U, Darienko PT (2017) Symbioses of the green algal genera Coccomyxa and Elliptochloris (Trebouxiophyceae, Chlorophyta). In: Grube M, Seckbach J, Muggia L (eds) Algal and cyanobacteria symbioses. World Scientific, Hackensack, NJ, pp 169–208

    Chapter  Google Scholar 

  • Hafellner J (2018) Focus on lichenicolous fungi: Diversity and taxonomy under the principle “one fungus – one name”. In Blanz P (ed) Biodiversity and ecology of fungi, lichens, and mosses, Austrian Academy of Sciences Biosystematics and Ecology Series. 34. Austrian Academy of Sciences, Vienna, pp 227–244

    Google Scholar 

  • Hametner C, Stocker-Wörgötter E, Grube M (2014a) New insights into diversity and selectivity of trentepohlialean lichen photobionts from the extratropics. Symbiosis 63:31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hametner C, Stocker-Wörgötter E, Rindi F, Grube M (2014b) Phylogenetic position and morphology of lichenized Trentepohliales (Ulvophyceae, Chlorophyta) from selected species of Graphidaceae. Phycol Res 62:170–186

    Article  CAS  Google Scholar 

  • Hawksworth DL, Grube M (2020) Lichens redefined as complex ecosystems. New Phytol 227:1281

    Article  PubMed  PubMed Central  Google Scholar 

  • Henkel PA, Yuzhakova LA (1936) Azotfiksiruyuschie bakterii v lishaynikah. Izv Biol Inst Permsk Gos Univ 10:9–10

    Google Scholar 

  • Henskens FL, Green TA, Wilkins A (2012) Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Ann Bot 110:555–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodkinson BP, Gottel NR, Schadt CW, Lutzoni F (2012) Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environ Microbiol 14:147–161

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson BP, Allen JL, Forrest LL, Goffinet B, Sérusiaux E, Andrésson ÓS, Miao V, Bellenger JP, Lutzoni F (2014) Lichen-symbiotic cyanobacteria associated with Peltigera have an alternative vanadium-dependent nitrogen fixation system. Eur J Phycol 49:11–19

    Article  CAS  Google Scholar 

  • Honegger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Biol 42:553–578

    Article  CAS  Google Scholar 

  • Honegger R (2012) The symbiotic phenotype of lichen-forming ascomycetes and their endo- and epibionts. In: Hock B (ed) The Mycota IX. Springer, Berlin, pp 287–339

    Google Scholar 

  • Honegger R, Edwards D, Axe L (2013) The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytol 197:264–275

    Article  PubMed  Google Scholar 

  • Hyvärinen M, Crittenden PD (2000) 33P translocation in the thallus of the mat-forming lichen Cladonia portentosa. New Phytol 145:281–288

    Article  Google Scholar 

  • Hyvärinen M, Härdling R, Tuomi J (2002) Cyanobacterial lichen symbiosis: the fungal partner as an optimal harvester. Oikos 98:498–504

    Article  Google Scholar 

  • Johansson O, Olofsson J, Giesler R, Palmqvist K (2011) Lichen responses to nitrogen and phosphorus additions can be explained by the different symbiont responses. New Phytol 191:795–805

    Article  CAS  PubMed  Google Scholar 

  • Joneson S, Lutzoni F (2009) Compatibility and thigmotropism in the lichen symbiosis: a reappraisal. Symbiosis 47:109–115

    Article  Google Scholar 

  • Joneson S, Armaleo D, Lutzoni F (2011) Fungal and algal gene expression in early developmental stages of lichen-symbiosis. Mycologia 103:291–306

    Article  CAS  PubMed  Google Scholar 

  • Kaasalainen U, Tuovinen V, Mwachala G, Pellikka P, Rikkinen J (2021) Complex interaction networks among cyanolichens of a tropical biodiversity hotspot. Front Microbiol 12:672333

    Article  PubMed  PubMed Central  Google Scholar 

  • Kauppi M, Verseghy-Patay K (1990) Determination of the distribution of lichen substances in the thallus by fluorescence microscopy. Ann Bot Fenn 27:189–202

    Google Scholar 

  • Kershaw KA (1985) Physiological ecology of lichens. Cambridge University Press, Cambridge

    Google Scholar 

  • Keuler R, Garretson A, Saunders T, Erickson RJ, St Andre N, Grewe F, Smith H, Lumbsch HT, Huang J-P, Leavitt SD (2020) Genome-scale data reveal the role of hybridization in lichen-forming fungi. Sci Rep 10:1–14

    Article  Google Scholar 

  • Kim W, Liu R, Woo S, Kang KB, Park H, Yu YH, Ha HH, Oh SY, Yang JH, Kim H, Yun SH, Hur JS (2021) Linking a gene cluster to atranorin, a major cortical substance of lichens, through genetic dereplication and heterologous expression. MBio 12:e01111–e01121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlmeyer J, Hawksworth DL, Volkmann-Kohlmeyer B (2004) Observations on two marine and maritime “borderline” lichens: Mastodia tessellata and Collemopsidium pelvetiae. Mycol Prog 3:51–56

    Article  Google Scholar 

  • Kono M, Kon Y, Ohmura Y, Satta Y, Terai Y (2020) In vitro resynthesis of lichenization reveals the genetic background of symbiosis-specific fungal-algal interaction in Usnea hakonensis. BMC Genomics 21:1–16

    Article  Google Scholar 

  • Kosecka M, Jabłońska A, Flakus A, Rodriguez-Flakus P, Kukwa M, Guzow-Krzemińska B (2020) Trentepohlialean algae (Trentepohliales, Ulvophyceae) show preference to selected mycobiont lineages in lichen symbioses. J Phycol 56:979–993

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer H (2005) Antioxidants and photoprotection in a lichen as compared to its isolated symbiotic partners. PNAS 102:3141–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranner I, Beckett R, Hochman A, Nash TH III (2008) Desiccation-tolerance in lichens: a review. Bryologist 111:576–593

    Article  Google Scholar 

  • Kroken S, Taylor JW (2001) A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia. Mycologia 93:38–53

    Article  CAS  Google Scholar 

  • Lakatos M, Lange-Bertalot H, Büdel B (2004) Diatoms living inside the thallus of the green algal lichen Coenogonium linkii in neotropical lowland rain forests. J Phycol 40:70–73

    Article  Google Scholar 

  • Lambers H (1985) Respiration in intact plants and tissues: its regulation and dependence on environmental factors, metabolism and invaded organisms. In: Douce R, Day DA (eds) Higher Plant Respiration. Springer, Berlin, pp 418–465

    Chapter  Google Scholar 

  • Larson DW (1987) The absorption and release of water by lichens. Bibl Lichenol 25:351–360

    Google Scholar 

  • Leiva D, Fernández-Mendoza F, Acevedo J, Carú M, Grube M, Orlando J (2021) The bacterial community of the foliose macro-lichen Peltigera frigida is more than a mere extension of the microbiota of the subjacent substrate. Microb Ecol 81:965–976

    Article  CAS  PubMed  Google Scholar 

  • Liba CM, Ferrara FIDS, Manfio GP, Fantinatti-Garboggini F, Albuquerque RC, Pavan C, Ramos PL, Moreira-Filho CA, Barbosa HR (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 101:1076–1086

    Article  CAS  PubMed  Google Scholar 

  • Lücking L, Grube M (2002) Facultative parasitism and reproductive strategies in Chroodiscus (Ascomycota, Ostropales). Stapfia 80:267–292

    Google Scholar 

  • Lücking R, Dal-Forno M, Sikaroodi M, Gillevet PM, Bungartz F, Moncada B, Yánez-Ayabaca A, Chaves JL, Coca LF, Lawrey JD (2014) A single macrolichen constitutes hundreds of unrecognized species. PNAS 111:11091–11096

    Article  PubMed  PubMed Central  Google Scholar 

  • Lücking R, Hodkinson BP, Leavitt SD (2016) The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota - approaching one thousand genera. Bryologist 119:361–416

    Article  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    Article  CAS  PubMed  Google Scholar 

  • Mark K, Laanisto L, Bueno CG, Niinemets Ü, Keller C, Scheidegger C (2020) Contrasting co-occurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. New Phytol 227:1362–1375

    Article  CAS  PubMed  Google Scholar 

  • Matthews SW, Tucker SC, Chapman RL (1989) Ultrastructural features of mycobionts and trentepohliaceous phycobionts in selected subtropical crustose lichens. Bot Gaz 150:417–438

    Article  Google Scholar 

  • Meeßen J, Eppenstein S, Ott S (2013) Recognition mechanisms during the pre-contact state of lichens: II. Influence of algal exudates and ribitol on the response of the mycobiont of Fulgensia bracteata. Symbiosis 59:131–143

    Article  Google Scholar 

  • Merges D, Dal Grande F, Greve C, Otte J, Schmitt I (2021) Virus diversity in metagenomes of a lichen symbiosis (Umbilicaria phaea): complete viral genomes, putative hosts and elevational distributions. Environ Microbiol 23:6637–6650

    Article  CAS  PubMed  Google Scholar 

  • Moya P, Molins A, Chiva S, Bastida J, Barreno E (2020) Symbiotic microalgal diversity within lichenicolous lichens and crustose hosts on Iberian Peninsula gypsum biocrusts. Sci Rep 10:1–14

    Article  Google Scholar 

  • Muggia L, Nelson P, Wheeler T, Yakovchenko LS, Tønsberg T, Spribille T (2011) Convergent evolution of a symbiotic duet: the case of the lichen genus Polychidium (Peltigerales, Ascomycota). Am J Bot 98:1647–1656

    Article  PubMed  Google Scholar 

  • Muggia L, Pérez-Ortega S, Kopun T, Zellnig G, Grube M (2014) Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann Bot 114:463–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Muggia L, Leavitt S, Barreno E (2018) The hidden diversity of lichenised Trebouxiophyceae (Chlorophyta). Phycologia 57:503–524

    Article  Google Scholar 

  • Muggia L, Nelsen MP, Kirika PM, Barreno E, Beck A, Lindgren, H, Lumbsch HT, Leavitt SD, Trebouxia Working Group (2020) Formally described species woefully underrepresent phylogenetic diversity in the common lichen photobiont genus Trebouxia (Trebouxiophyceae, Chlorophyta): an impetus for developing an integrated taxonomy. Mol Phylogen Evol 149:106821

    Google Scholar 

  • Nascimbene J, Benesperi R, Giordani P, Grube M, Marini L, Vallese C, Mayrhofer H (2019) Could hair-lichens of high-elevation forests help detect the impact of global change in the Alps? Diversity 11:45

    Article  CAS  Google Scholar 

  • Nash T (2008) Nutrients, elemental accumulation, and mineral cycling. In: Nash T (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 234–251

    Chapter  Google Scholar 

  • Nelsen MP, Plata ER, Andrew CJ, Lücking R, Lumbsch HT (2011) Phylogenetic diversity of trentepohlialean algae associated with lichen-forming fungi. J Phycol 47:282–290

    Google Scholar 

  • Nelsen MP, Lücking R, Boyce CK, Lumbsch HT, Ree RH (2020) No support for the emergence of lichens prior to the evolution of vascular plants. Geobiology 18:3–13

    Article  PubMed  Google Scholar 

  • Nelsen MP, Leavitt SD, Heller K, Muggia L, Lumbsch HT (2022) Contrasting patterns of climatic niche divergence in Trebouxia—a clade of lichen-forming algae. Front Microbiol 13:791546

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen VK, Genta-Jouve G, Duong TH, Beniddir MA, Gallard JF, Ferron S, Boustie J, Mouray E, Grellier P, Chavasiri W, Le Pogam P (2020) Eumitrins C-E: structurally diverse xanthone dimers from the Vietnamese lichen Usnea baileyi. Fitoterapia 141:104449

    Article  CAS  PubMed  Google Scholar 

  • Nylander W (1857) De fungillis binis lichenicolis observatio. Bot Not 1857:83–84

    Google Scholar 

  • Oberwinkler F (2012) Basidiolichens. In: Hock B (ed) Fungal associations. Springer, Berlin, pp 341–362

    Chapter  Google Scholar 

  • Oliver MJ, Farrant JM, Hilhorst HWM, Mundree S, Williams B, Bewley JD (2020) Desiccation tolerance: avoiding cellular damage during drying and rehydration. Ann Rev Plant Biol 71:435–460

    Google Scholar 

  • Peksa O, Gebouská T, Škvorová Z, Vančurová L, Škaloud P (2022) The guilds in green algal lichens—an insight into the life of terrestrial symbiotic communities. FEMS Microbiol Ecol 98(2):fiac008

    Article  PubMed  Google Scholar 

  • Petrini O, Hake U, Dreyfuss MM (1990) An analysis of fungal communities isolated from fruticose lichens. Mycologia 82:444–451

    Article  Google Scholar 

  • Petrzik K, Vondrák J, Barták M, Peksa O, Kubešová O (2014) Lichens, a new source or yet unknown host of herbaceous plant viruses? Eur J Plant Pathol 138:549–559

    Article  CAS  Google Scholar 

  • Petrzik K, Vondrák J, Kvíderová J, Lukavský J (2015) Platinum anniversary: virus and lichen alga together more than 70 years. PLoS One 10:3

    Article  Google Scholar 

  • Petrzik K, Koloniuk I, Sarkisová T, Èíhal L (2016) Detection of herbaceous-plant pararetrovirus in lichen herbarium samples. Acta Virol 60:196–200

    Article  CAS  PubMed  Google Scholar 

  • Petrzik K, Koloniuk I, Sehadová H, Sarkisova T (2019) Chrysoviruses inhabited symbiotic fungi of lichens. Viruses 11:12

    Article  Google Scholar 

  • Peveling E (1970) Die Darstellung der Oberflächenstrukturen von Flechten mit dem Raster-Elektronenmikroskop. Deutsche Bot Ges NF 4:89–101

    Google Scholar 

  • Pichler G, Muggia L, Candotto Carniel F, Grube M, Kranner I (2023) How to build a lichen: from metabolite release to symbiotic interplay. New Phytol 238:1362–1378

    Article  PubMed  Google Scholar 

  • Pizarro D, Divakar PK, Grewe F, Crespo A, Dal Grande F, Lumbsch HT (2020) Genome-wide analysis of biosynthetic gene cluster reveals correlated gene loss with absence of usnic acid in lichen-forming fungi. Genome Biol Evol 12:1858–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poelt J, Mayrhofer H (1988) Über Cyanotrophie bei Flechten. Plant Syst Evol 158:265–281

    Article  Google Scholar 

  • Ponsero AJ, Hurwitz BL, Magain N, Miadlikowska J, Lutzoni F, U’Ren JM (2021) Cyanolichen microbiome contains novel viruses that encode genes to promote microbial metabolism. ISME Commun 1:1–4

    Article  Google Scholar 

  • Printzen C, Ekman S, Tønsberg T (2003) Phylogeography of Cavernularia hultenii: evidence of slow genetic drift in a widely disjunct lichen. Mol Ecol 12:1473–1486

    Article  CAS  PubMed  Google Scholar 

  • Rai AN (2002) Cyanolichens: nitrogen metabolism. In: Rai AM, Bergman B, Rasmusson U (eds) Cyanobacteria in symbiosis. Springer, Dordrecht, pp 97–115

    Chapter  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JV, Gresham C, Bowman WD (1998) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114:471–482

    Article  PubMed  Google Scholar 

  • Resl P, Bujold AR, Tagirdzhanova G, Meidl P, Freire Rallo S, Kono M, Fernández-Brime S, Guðmundsson H, Andrésson ÓS, Muggia L, Mayrhofer H, McCutcheon JP, Wedin M, Werth S, Willis LM, Spribille T (2022) Large differences in carbohydrate degradation and transport potential among lichen fungal symbionts. Nat Commun 13:2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikkinen J (2017) Cyanobacteria in terrestrial symbiotic systems. In: Hallenbeck PC (ed) Modern topics in the phototrophic prokaryotes. Springer, Cham, pp 243–294

    Chapter  Google Scholar 

  • Sanders WB (2014) Complete life cycle of the lichen fungus Calopadia puiggarii (Pilocarpaceae, Ascomycetes) documented in situ: Propagule dispersal, establishment of symbiosis, thallus development, and formation of sexual and asexual reproductive structures. Am J Bot 101:1836–1848

    Article  PubMed  Google Scholar 

  • Sanders WB, Ascaso C (1995) Reiterative production and deformation of cell walls in expanding thallus nets of the lichen Ramalina menziesii (Lecanorales, Ascomycetes). Am J Bot 82:1358–1366

    Article  Google Scholar 

  • Sanders WB, Masumoto H (2021) Lichen algae: the photosynthetic partners in lichen symbioses. Lichenologist 53:347–393

    Article  Google Scholar 

  • Schaper GM, Ott S (2003) Photobiont selectivity and interspecific in interactions in lichen communities. Culture experiments with the mycobiont Fulgensia bracteata. Plant Biol 5:441–450

    Article  Google Scholar 

  • Scherrer S, Honegger R (2003) Inter- and intraspecific variation of homologous hydrophobin (H1) gene sequences among Xanthoria spp. (lichen-forming ascomycetes). New Phytol 158:375–389

    Article  CAS  Google Scholar 

  • Scherrer S, De Vries OMH, Dudler R, Wessels JGH, Honegger R (2000) Interfacial self-assembly of fungal hydrophobins of the lichen-forming ascomycetes Xanthoria parietina and X. ectaneoides. Fungal Genet Biol 30:81–93

    Article  CAS  PubMed  Google Scholar 

  • Schmitt I, Lumbsch HT (2009) Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS One 4:e4437

    Article  PubMed  PubMed Central  Google Scholar 

  • Schüßler A, Kluge M (2001) Geosiphon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycorrhizal research. In: Hock B (ed) The Mycota 9: fungal associations. Springer, Berlin, pp 151–161

    Chapter  Google Scholar 

  • Schwendener S (1869) Die Algentypen der Flechtengonidien. C. Schultze

    Google Scholar 

  • Singh G, Calchera A, Schulz M, Drechsler M, Bode HB, Schmitt I, Dal Grande F (2021) Climate-specific biosynthetic gene clusters in populations of a lichen-forming fungus. Environ Microbiol 23:4260–4275

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Calchera A, Merges D, Valim H, Otte J, Schmitt I, Dal Grande F (2022) A candidate gene cluster for the bioactive natural product gyrophoric acid in lichen-forming fungi. Microbiol Spectr. https://doi.org/10.1128/spectrum.00109-22

  • Škvorová Z, Černajová I, Steinová J, Peksa O, Moya P, Škaloud P (2022) Promiscuity in lichens follows clear rules: partner switching in Cladonia is regulated by climatic factors and soil chemistry. Front Microbiol 12:781585

    Article  PubMed  PubMed Central  Google Scholar 

  • Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Toome-Heller M, Thor G, Mayrhofer H, Johannesson H, McCutcheon J (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353:488–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spribille T, Tagirdzhanova G, Goyette S, Tuovinen V, Case R, Zandberg WF (2020) 3D biofilms: in search of the polysaccharides holding together lichen symbioses. FEMS Microbiol Lett 367:5

    Article  Google Scholar 

  • Steinová J, Holien H, Košuthová A, Škaloud P (2022) An exception to the rule? Could photobiont identity be a better predictor of lichen phenotype than mycobiont identity? J Fungi 8:275

    Article  Google Scholar 

  • Stocker-Wörgötter E (2001) Experimental lichenology and microbiology of lichens: culture experiments, secondary chemistry of cultured mycobionts, resynthesis, and thallus morphogenesis. Bryologist 104:576–581

    Article  Google Scholar 

  • Thaxter R (1892) On the Myxobacteriaceae, a new order of Schizomycetes. Bot Gaz 17:389–406

    Article  Google Scholar 

  • Trembley ML, Ringli C, Honegger R (2002) Hydrophobins DGH1, DGH2, and DGH3 in the lichen-forming basidiomycete Dictyonema glabratum. Fungal Genet Biol 35:247–259

    Article  CAS  PubMed  Google Scholar 

  • Tripathi M, Joshi Y (2019) Endolichenic fungi: present and future trends. Springer, Singapore

    Book  Google Scholar 

  • Tuong TL, Do LT, Aree T, Wonganan P, Chavasiri W (2020) Tetrahydroxanthone–chromanone heterodimers from lichen Usnea aciculifera and their cytotoxic activity against human cancer cell lines. Fitoterapia 147:104732

    Article  CAS  PubMed  Google Scholar 

  • Tuovinen V, Millanes AM, Freire-Rallo S, Rosling A, Wedin M (2021) Tremella macrobasidiata and Tremella variae have abundant and widespread yeast stages in Lecanora lichens. Environ Microbiol 23:2484–2498

    Article  CAS  PubMed  Google Scholar 

  • U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE (2012) Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot 99:898–914

    Article  PubMed  Google Scholar 

  • Urayama SI, Doi N, Kondo F, Chiba Y, Takaki Y, Hirai M, Minegshi Y, Hagiwara D, Nunoura T (2020) Diverged and active partitiviruses in lichen. Front Microbiol 11:561344

    Article  PubMed  PubMed Central  Google Scholar 

  • Velmala S, Myllys L, Halonen P, Goward T, Ahti T (2009) Molecular data show that Bryoria fremontii and B. tortuosa (Parmeliaceae) are conspecific. Lichenologist 41:231–242

    Article  Google Scholar 

  • Vondrak J, Kubásek J (2013) Algal stacks and fungal stacks as adaptations to high light in lichens. Lichenologist 45:115–124

    Article  Google Scholar 

  • Walser JC (2004) Molecular evidence for limited dispersal of vegetative propagules in the epiphytic lichen Lobaria pulmonaria. Am J Bot 91:1273–1276

    Article  PubMed  Google Scholar 

  • Wedin M, Döring H, Gilenstam G (2004) Saprotrophy and lichenization as options for the same fungal species on different substrata: environmental plasticity and fungal lifestyles in the StictisConotrema complex. New Phytol 164:459–465

    Article  Google Scholar 

  • Wedin M, Maier S, Fernandez-Brime S, Cronholm B, Westberg M, Grube M (2016) Microbiome change by symbiotic invasion in lichens. Environ Microbiol 18:1428–1439

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DM, Creevy AL, Kalu CL, Schwartzman DW (2015) Are heterotrophic and silica-rich eukaryotic microbes an important part of the lichen symbiosis? Mycology 6:4–7

    Article  PubMed  Google Scholar 

  • Wirth V, Hauck M, Schultz M (2013) Die Flechten Deutschlands, vol Band 1. Ulmer, Stuttgart

    Google Scholar 

  • Yamamoto Y, Kinoshita Y, Thor G, Hasumi M, Kinoshita K, Koyama K, Takahashi K, Yoshimura I (2002) Isofuranonaphthoquinone derivatives from cultures of the lichen Arthonia cinnabarina (DC.) Wallr. Phytochemistry 60:741–745

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

    Article  CAS  PubMed  Google Scholar 

  • Zopf W (1897) Ueber Nebensymbiose (Parasymbiose). Ber Deutsch Bot Ges 15:90–92

    Article  Google Scholar 

Download references

Acknowledgments

The author thank Fernando Fernandez Mendoza (Graz) for discussions and Ilse Kranner (Innsbruck) for comments on the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Grube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grube, M. (2024). Lichens. In: Hsueh, YP., Blackwell, M. (eds) Fungal Associations. The Mycota, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-031-41648-4_6

Download citation

Publish with us

Policies and ethics