Abstract
Public trust represents a cornerstone of today’s democracies, their media, and institutions and in the search for consensus among different actors. However, the deliberate and non-deliberate spreading of misinformation and fake news severely damages the cohesion of our societies. This effect is intensified by the ease and speed of information creation and distribution that today’s social media offers. In addition, the current state-of-the-art for artificial intelligence available to everybody at their fingertips to create ultra-realistic fake multimedia news is unprecedented. This situation challenges professionals within the communication sphere, i.e., media professionals and public servants, to counter this flood of misinformation. While these professionals can also use artificial intelligence to combat fake news, introducing this technology into the working environment and work processes often meets a wide variety of resistance. Hence, this paper investigates what barriers but also chances these communication experts identify from their professional point of view. For this purpose, we have conducted a quantitative study with more than 100 participants, including journalists, press officers, experts from different ministries, and scientists. We analyzed the results with a particular focus on the types of fake news and in which capacity they were encountered, the experts’ general attitude towards artificial intelligence, as well as the perceived most pressing barriers concerning its use. The results are then discussed, and propositions are made concerning actions for the most pressing issues with a broad societal impact.
Keywords
- Fake News
- Artificial Intelligence
- Media Forensic
- Journalism
- Social Media
- Public Sector
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Hossová, M.: Fake news and disinformation: phenomenons of post-factual society. Media Literacy Acad. Res. 1, 27–35 (2018)
Bybee, C.: Can democracy survive in the post-factual age?: A return to the Lippmann-Dewey debate about the politics of news. Journal. Commun. Monographs 1, 28–66 (1999)
Khaldarova, I., Pantti, M.: Fake news: the narrative battle over the Ukrainian conflict. Journal. Pract. 10, 891–901 (2016). https://doi.org/10.1080/17512786.2016.1163237
Seboeck, W., Biron, B., Lampoltshammer, T.J., Scheichenbauer, H., Tschohl, C., Seidl, L.: Disinformation and fake news. In: Masys, A.J. (ed.) Handbook of Security Science, pp. 1–22. Springer, Cham (2020). https://doi.org/10.1007/978-3-319-51761-2_3-1
Fraas, C., Klemm, M., Gesellschaft für Angewandte Linguistik (eds.) Mediendiskurse: Bestandsaufnahme und Perspektiven. P. Lang, Frankfurt am Main ; New York (2005)
Kriesi, H., Lavenex, S., Esser, F., Matthes, J., Bühlmann, M., Bochsler, D.: Democracy in the Age of Globalization and Mediatization. Palgrave Macmillan UK, London (2013). https://doi.org/10.1057/9781137299871
Bennett, W.L., Livingston, S.: The disinformation order: disruptive communication and the decline of democratic institutions. Eur. J. Commun. 33, 122–139 (2018). https://doi.org/10.1177/0267323118760317
Carayannis, E.G., Barth, T.D., Campbell, D.F.: The Quintuple Helix innovation model: global warming as a challenge and driver for innovation. J. Innov. Entrepreneurship. 1, 1–12 (2012)
Van Meter, H.J.: Revising the DIKW pyramid and the real relationship between data, information, knowledge, and wisdom. Law Technol. Hum. 2, 69–80 (2020)
Guo, L.: China’s “fake news” problem: exploring the spread of online rumors in the government-controlled news media. Digit. Journal. 8, 992–1010 (2020)
Ninkov, I.: Separating truth from fiction: legal aspects of “fake news.” Biztonságtudományi Szemle. 2, 51–64 (2020)
Wood, T.J., Porter, E.: The elusive backfire effect: mass attitude’ steadfast factual adherence. Polit. Behav. 41, 135–163 (2019)
Huijstee, D., Vermeulen, I., Kerkhof, P., Droog, E.: Continued influence of misinformation in times of COVID‐19. Int. J. Psychol. ijop.12805 (2021). https://doi.org/10.1002/ijop.12805
Jacobson, N.G., Thacker, I., Sinatra, G.M.: Here’s hoping it’s not just text structure: the role of emotions in knowledge revision and the backfire effect. Discourse Process. 1–23 (2021). https://doi.org/10.1080/0163853X.2021.1925059
Appel, M. (ed.): Die Psychologie des Postfaktischen: über Fake News, “Lügenpresse” Clickbait & Co. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-58695-2
Hagen, L.: Nachrichtenjournalismus in der Vertrauenskrise. “Lügenpresse” wissenschaftlich betrachtet: Journalismus zwischen Ressourcenkrise und entfesseltem Publikum. ComSoz. 48, 152–163 (2015). https://doi.org/10.5771/0010-3497-2015-2-152
Hajli, N., Saeed, U., Tajvidi, M., Shirazi, F.: Social bots and the spread of disinformation in social media: the challenges of artificial intelligence. Brit. J. Manag. 1467–8551.12554 (2021). https://doi.org/10.1111/1467-8551.12554
Shao, C., Ciampaglia, G.L., Varol, O., Flammini, A., Menczer, F.: The spread of fake news by social bots. 96, 104. arXiv preprint arXiv:1707.07592 (2017)
Wang, P., Angarita, R., Renna, I.: Is this the era of misinformation yet: combining social bots and fake news to deceive the masses. Presented at the Companion Proceedings of the Web Conference 2018 (2018)
Zhang, T.: Deepfake generation and detection, a survey. Multimedia Tools Appl. 81, 6259–6276 (2021). https://doi.org/10.1007/s11042-021-11733-y
Mirsky, Y., Lee, W.: The creation and detection of deepfakes: a survey. ACM Comput. Surv. 54, 1–41 (2022). https://doi.org/10.1145/3425780
Ozbay, F.A., Alatas, B.: Fake news detection within online social media using supervised artificial intelligence algorithms. Physica A: Stat. Mech. Appl. 540, 123174 (2020)
Faustini, P.H.A., Covoes, T.F.: Fake news detection in multiple platforms and languages. Expert Syst. Appl. 158, 113503 (2020)
Neves, J.C., Tolosana, R., Vera-Rodriguez, R., Lopes, V., Proença, H., Fierrez, J.: Ganprintr: improved fakes and evaluation of the state of the art in face manipulation detection. IEEE J. Sel. Top. Sig. Process. 14, 1038–1048 (2020)
Zhou, X., Jain, A., Phoha, V.V., Zafarani, R.: Fake news early detection: a theory-driven model. Digit. Threats Res. Pract. 1, 1–25 (2020)
Xu, K., Wang, F., Wang, H., Yang, B.: Detecting fake news over online social media via domain reputations and content understanding. Tsinghua Sci. Technol. 25, 20–27 (2019)
de Oliveira, N.R., Medeiros, D.S., Mattos, D.M.: A sensitive stylistic approach to identify fake news on social networking. IEEE Sig. Process. Lett. 27, 1250–1254 (2020)
Elhadad, M.K., Li, K.F., Gebali, F.: Detecting misleading information on COVID-19. IEEE Access 8, 165201–165215 (2020)
Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31, 211–236 (2017). https://doi.org/10.1257/jep.31.2.211
Wardle, C., Derakhshan, H.: Information disorder: toward an interdisciplinary framework for research and policymaking. Council of Europe Strasbourg (2017)
Jung, T., Kim, S., Kim, K.: Deepvision: deepfakes detection using human eye blinking pattern. IEEE Access 8, 83144–83154 (2020)
Müller, N.M., Pizzi, K., Williams, J.: Human perception of audio deepfakes. Presented at the Proceedings of the 1st International Workshop on Deepfake Detection for Audio Multimedia (2022)
Ahmed, S.: Who inadvertently shares deepfakes? Analyzing the role of political interest, cognitive ability, and social network size. Telematics Inform. 57, 101508 (2021)
Valenzuela, S., Halpern, D., Katz, J.E., Miranda, J.P.: The paradox of participation versus misinformation: social media, political engagement, and the spread of misinformation. Digit. Journal. 7, 802–823 (2019). https://doi.org/10.1080/21670811.2019.1623701
Weerawardana, M., Fernando, T.: Deepfakes detection methods: a literature survey. In: 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS), pp. 76–81 (2021). https://doi.org/10.1109/ICIAfS52090.2021.9606067
Sundar, S.S., Molina, M.D., Cho, E.: Seeing is believing: is video modality more powerful in spreading fake news via online messaging apps? J. Comput.-Mediat. Commun. 26, 301–319 (2021). https://doi.org/10.1093/jcmc/zmab010
Pennathur, P.R., Bisantz, A.M., Fairbanks, R.J., Perry, S.J., Zwemer, F., Wears, R.L.: Assessing the impact of computerization on work practice: information technology in emergency departments. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 51, pp. 377–381 (2007). https://doi.org/10.1177/154193120705100448
Grabowski, M., Rowen, A., Rancy, J.-P.: Evaluation of wearable immersive augmented reality technology in safety-critical systems. Saf. Sci. 103, 23–32 (2018). https://doi.org/10.1016/j.ssci.2017.11.013
Gillath, O., Ai, T., Branicky, M.S., Keshmiri, S., Davison, R.B., Spaulding, R.: Attachment and trust in artificial intelligence. Comput. Hum. Behav. 115, 106607 (2021). https://doi.org/10.1016/j.chb.2020.106607
Nass, C., Moon, Y.: Machines and mindlessness: social responses to computers. J. Soc. Isssues 56, 81–103 (2000). https://doi.org/10.1111/0022-4537.00153
Seeber, I., et al.: Machines as teammates: a research agenda on AI in team collaboration. Inf. Manag. 57, 103174 (2020). https://doi.org/10.1016/j.im.2019.103174
Okamura, K., Yamada, S.: Adaptive trust calibration for human-AI collaboration. PLoS ONE 15, e0229132 (2020). https://doi.org/10.1371/journal.pone.0229132
Shin, J., Chan-Olmsted, S.: User perceptions and trust of explainable machine learning fake news detectors. Int. J. Commun. 17, 23 (2022)
Brandtzaeg, P.B., Følstad, A.: Trust and distrust in online fact-checking services. Commun. ACM. 60, 65–71 (2017). https://doi.org/10.1145/3122803
Zhou, X., Zafarani, R.: A survey of fake news: fundamental theories, detection methods, and opportunities. ACM Comput. Surv. 53, 1–40 (2021). https://doi.org/10.1145/3395046
Siau, K., Wang, W.: Building trust in artificial intelligence, machine learning, and robotics. Cutter Bus. Technol. J. 31, 47–53 (2018)
Mohseni, S., Zarei, N., Ragan, E.D.: A Multidisciplinary survey and framework for design and evaluation of explainable AI systems. ACM Trans. Interact. Intell. Syst. 11, 1–45 (2021). https://doi.org/10.1145/3387166
Matthews, G., Lin, J., Panganiban, A.R., Long, M.D.: Individual differences in trust in autonomous robots: implications for transparency. IEEE Trans. Human-Mach. Syst. 50, 234–244 (2020). https://doi.org/10.1109/THMS.2019.2947592
Araujo, T., Helberger, N., Kruikemeier, S., de Vreese, C.H.: In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI Soc. 35(3), 611–623 (2020). https://doi.org/10.1007/s00146-019-00931-w
Hofkirchner, W., Kreowski, H.-J.: Digital humanism: how to shape digitalisation in the age of global challenges? In: IS4SI 2021, p. 4. MDPI (2022). https://doi.org/10.3390/proceedings2022081004
Schmölz, A.: Die Conditio Humana im digitalen Zeitalter: Zur Grundlegung des Digitalen Humanismus und des Wiener Manifests. MedienPädagogik. 208–234 (2020). https://doi.org/10.21240/mpaed/00/2020.11.13.X
Floridi, L., Cowls, J.: A unified framework of five principles for AI in society. Harvard Data Sci. Rev. (2019). https://doi.org/10.1162/99608f92.8cd550d1
Hickok, M.: Lessons learned from AI ethics principles for future actions. AI Ethics 1(1), 41–47 (2020). https://doi.org/10.1007/s43681-020-00008-1
Becker, S.J., Nemat, A.T., Lucas, S., Heinitz, R.M., Klevesath, M., Charton, J.E.: A code of digital ethics: laying the foundation for digital ethics in a science and technology company. AI Soc. (2022). https://doi.org/10.1007/s00146-021-01376-w
Acknowledgments
The work described in this paper was funded in the context of the defalsif-AI project (FFG project number 879670, funded by the Austrian security research program KIRAS of the Federal Ministry of Agriculture, Regions, and Tourism BMLRT).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 IFIP International Federation for Information Processing
About this paper
Cite this paper
Seböck, W., Biron, B., Lampoltshammer, T.J. (2023). Barriers to the Introduction of Artificial Intelligence to Support Communication Experts in Media and the Public Sector to Combat Fake News and Misinformation. In: Edelmann, N., Danneels, L., Novak, AS., Panagiotopoulos, P., Susha, I. (eds) Electronic Participation. ePart 2023. Lecture Notes in Computer Science, vol 14153. Springer, Cham. https://doi.org/10.1007/978-3-031-41617-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-41617-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41616-3
Online ISBN: 978-3-031-41617-0
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.ifip.org/