Skip to main content

An Unsteady Flow of Fluid Velocity, Temperature, and Heat Emission on MHD Free Convection Flow of Some Nanofluids

  • Conference paper
  • First Online:
Advances in Mathematical Modeling and Scientific Computing (ICRDM 2022)

Abstract

The influence of a magnetic field on an electrically conducting fluid over a porous plate has piqued the interest of a wide range of specialists, from plasma scientists to nuclear reactor operators to geothermal energy producers to aerodynamics researchers. Magneto-hydrodynamics (MHD) and heat transfer have recently received a lot of interest for new applications in metallurgical processing, for example. Excessive heat transfer is controlled by using magnetic fields in the process of melting refinement. The natural convection flow of various nanofluids along an infinitely long vertical plate embedded in a porous medium is examined in this study using ramping wall velocity and temperature. Copper, titanium dioxide, and aluminium oxide nanoparticles are all mixed together with water as the primary fluid. These estimates additionally take into account non-linear thermal radiation flow and heat injection/consumption effects. Mass and heat transfer equations can be approximated using the Laplace transform. Graphs are used to explain the physical characteristics of the related parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi, S.U., Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. Argonne National Lab, IL, USA (1995)

    Google Scholar 

  2. Eastman, J.A., Choi, U.S., Li, S., Thompson, L.J., Lee, S.: Enhanced thermal conductivity through the development of nanofluids. MRS Proc. 457, 3–11 (1996). https://doi.org/10.1557/PROC-457-3

    Article  Google Scholar 

  3. Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., Grulke, E.A.: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79, 2252–2254 (2001). https://doi.org/10.1063/1.1408272

    Article  Google Scholar 

  4. Akmal, N., Sagheer, M., Hussain, S., Kamran, A.: Investigation of free convection in micropolar nanofluid with induced magnetic field. Eur. Phys. J. Plus 134, 235 (2019). https://doi.org/10.1140/epjp/i2019-12512-7

    Article  Google Scholar 

  5. Kumar, T.S., Kumar, B.R., Makinde, O.D., Vijaya Kumar, A.G.: Magneto-convective heat transfer in micropolar nanofluid over a stretching sheet with non-uniform heat source/sink. Defect Diffus. Forum 387, 78–90 (2018). https://doi.org/10.4028/www.scientific.net/ddf.387.78

    Article  Google Scholar 

  6. Das, S.K., Choi, S.U.S.: A review of heat transfer in nanofluids. In: Irvine, T.F., Hartnett, J.P. (eds.) Advances in Heat Transfer, vol. 41, pp. 81–197. Elsevier (2009). https://doi.org/10.1016/s0065-2717(08)41002-x

  7. Sravan kumar, T.: Impact of Lorentz force on free convection flow of a viscous fluid past an infinite vertical plate. SN Appl. Sci. 1, 1257 (2019). https://doi.org/10.1007/s42452-019-1292-8

  8. Sravan Kumar, T., Dinesh, P.A., Makinde, O.D.: Impact of Lorentz force and viscous dissipation on unsteady nanofluid convection flow over an exponentially moving vertical plate. Math. Models Comput. Simul. 12, 631–646 (2020). https://doi.org/10.1134/s2070048220040110

    Article  MathSciNet  Google Scholar 

  9. Shah, Z., Alzahrani, E.O., Dawar, A., Ullah, A., Khan, I.: Influence of Cattaneo-Christov model on DarcyForchheimer flow of Micropolar Ferrofluid over a stretching/shrinking sheet. Int. Commun. Heat Mass Transf. 110, 104385 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2019.104385

    Article  Google Scholar 

  10. Tiwari, A., Shah, P.D., Chauhan, S.S.: Analytical study of micropolar fluid flow through porous layered microvessels with heat transfer approach. Eur. Phys. J. Plus 135, 209 (2020). https://doi.org/10.1140/epjp/s13360-020-00128-x

    Article  Google Scholar 

  11. Mahdy, A., ElShehabey, H.M.: Uncertainties in physical property effects on viscous flow and heat transfer over a nonlinearly stretching sheet with nanofluids. Int. Commun. Heat Mass Transf. 39, 713–719 (2012). https://doi.org/10.1016/j.icheatmasstransfer.2012.03.019

    Article  Google Scholar 

  12. Mahdy, A.: Unsteady mixed convection boundary layer flow and heat transfer of nanofluids due to stretching sheet. Nucl. Eng. Des. 249, 248–255 (2012). https://doi.org/10.1016/j.nucengdes.2012.03.025

    Article  Google Scholar 

  13. Vemula, R., Chamkha, A.J., Mallesh, M.P.: Nanofluid flow past an impulsively started vertical plate with variable surface temperature. Int. J. Numer. Methods Heat Fluid Flow 26, 328–347 (2016). https://doi.org/10.1108/hff-07-2014-0209

    Article  MathSciNet  Google Scholar 

  14. Kumaresan, E., Sravan Kumar, T., Suresh Babu, R.: MHD slip flow and heat transfer of Cu-Fe3O4/ethylene glycol-based hybrid nanofluid over a stretching surface. Biointerf. Res. Appl. Chem. 11, 11956–11968 (2020). https://doi.org/10.33263/briac114.1195611968

    Article  Google Scholar 

  15. Cao, Z., Zhao, J., Wang, Z., Liu, F., Zheng, L.: MHD flow and heat transfer of fractional Maxwell viscoelastic nanofluid over a moving plate. J. Mol. Liq. 222, 1121–1127 (2016). https://doi.org/10.1016/j.molliq.2016.08.012

    Article  Google Scholar 

  16. Mahanthesh, B., Gireesha, B.J., Gorla, R.S.R., Abbasi, F.M., Shehzad, S.A.: Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. J. Magn. Magn. Mater. 417, 189–196 (2016). https://doi.org/10.1016/j.jmmm.2016.05.051

    Article  Google Scholar 

  17. Hamad, M.A.A., Pop, I., Md Ismail, A.I.: Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate. Non-linear Anal.: Real World Appl. 12, 1338–1346 (2011). https://doi.org/10.1016/j.nonrwa.2010.09.014

  18. Khan, W.A., Rashad, A.M., El-Kabeir, S.M.M., El-Hakiem, A.M.A.: Framing the MHD micropolarnanofluid flow in natural convection heat transfer over a radiative truncated cone. Processes 8 (2020). https://doi.org/10.3390/pr8040379

  19. Ibrahim, W., Gadisa, G.: Non-linear convective boundary layer flow of micropolar-couple stress nanofluids past permeable stretching sheet using Cattaneo-Christov heat and mass flux model. Heat Transf. 49, 2521–2550 (2020). https://doi.org/10.1002/htj.21733

    Article  Google Scholar 

  20. Turkyilmazoglu, M., Pop, I.: Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect. Int. J. Heat Mass Transf. 59, 167–171 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.009

    Article  Google Scholar 

  21. Turkyilmazoglu, M.: Unsteady convection flow of some nanofluids past a moving vertical flat plate with heat transfer. J. Heat Transf. 136 (2013). https://doi.org/10.1115/1.4025730

  22. Sheikholeslami, M., Bandpy, M.G., Ellahi, R., Zeeshan, A.: Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces. J. Magn. Magn. Mater. 369, 69–80 (2014). https://doi.org/10.1016/j.jmmm.2014.06.017

    Article  Google Scholar 

  23. Ahmed, M.B., Hanan, E., Osama, O., Kholmirzo, T.K., Tarek, H., Medhat, A.I.: Effect of nano metal oxides on heme molecule: molecular and biomolecular approaches. Biointerf. Res. Appl. Chem. 10, 4837–4845 (2019). https://doi.org/10.33263/briac101.837845

    Article  Google Scholar 

  24. Khan, M.N., Nadeem, S., Muhammad, N.: Micropolar fluid flow with temperature-dependent transport properties. Heat Transf. 49, 2375–2389 (2020). https://doi.org/10.1002/htj.21726

    Article  Google Scholar 

  25. Pedram, E., Ehsan, K.: Experimental investigation of rheological properties and formation damage of waterbased drilling fluids in the presence of Al2O3, Fe3O4, and TiO2 nanoparticles. Biointerf. Res. Appl. Chem. 10, 5886–5894 (2020). https://doi.org/10.33263/briac104.886894

    Article  Google Scholar 

  26. Sabri, N., Moulai-Mostefa, N.: Formulation and characterization of oil-in-water emulsions stabilized by Saponins extracted from Hedera Helix Algeriensis using response surface method. Biointerf. Res. Appl. Chem. 10, 6282–6292 (2020). https://doi.org/10.33263/briac105.62826292

    Article  Google Scholar 

  27. Ali, F., Gohar, M., Khan, I.: MHD flow of water-based Brinkman type nanofluid over a vertical plate embedded in a porous medium with variable surface velocity, temperature and concentration. J. Mol. Liq. 223, 412–419 (2016). https://doi.org/10.1016/j.molliq.2016.08.068

    Article  Google Scholar 

  28. Kataria, H.R., Mittal, A.S.: Velocity, mass and temperature analysis of gravity-driven convection nanofluid flow past an oscillating vertical plate in the presence of magnetic field in a porous medium. Appl. Therm. Eng. 110, 864–874 (2017). https://doi.org/10.1016/j.applthermaleng.2016.08.129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramesh Babu, K., Buggaramulu, J. (2024). An Unsteady Flow of Fluid Velocity, Temperature, and Heat Emission on MHD Free Convection Flow of Some Nanofluids. In: Kamalov, F., Sivaraj, R., Leung, HH. (eds) Advances in Mathematical Modeling and Scientific Computing. ICRDM 2022. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-41420-6_36

Download citation

Publish with us

Policies and ethics