Skip to main content

Study of Bénard-Marangoni Convection in a Microfluid with Coriolis Force

  • Conference paper
  • First Online:
Advances in Mathematical Modeling and Scientific Computing (ICRDM 2022)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

  • 120 Accesses

Abstract

The convection of micro-structured fluid particles and the Coriolis force has been investigated in the problem. The eigenvalues are calculated for upper free velocity and adiabatic temperature boundary conditions and lower rigid velocity and isothermal temperature boundary conditions. The analysis is based on solving linear disturbance equations. The impact of different micropolar fluid variables and the Taylor number based on the convection has also been investigated. The study could observe that while the coupling and micropolar heat conduction parameters along with rotational parameters have a stabilizing effect, the couple stress parameter results in a destabilizing effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eringen, A.C.: Theory of micropolar fluids. J. Appl. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  2. Eringen, A.C.: Simple microfluidics. Int. J. Eng. Sci. 2(2), 205–217 (1964)

    Article  Google Scholar 

  3. Lukaszewicz, G.: Micropolar Fluid Theory and Applications. Birkhauser, Boston (1999)

    Book  Google Scholar 

  4. Power, H.: Bio-Fluid Mechanics: Advances in Fluid Mechanics. W. I. T. Press (1995)

    Google Scholar 

  5. Datta, A.B., Sastry, V.U.K.: Thermal instability of a horizontal layer of micropolar fluid heated from below. Int. J. Eng. Sci. 14(7), 631–637 (1976)

    Article  Google Scholar 

  6. Ahmadi, G.: Stability of a micropolar fluid layer heated from below. Int. J. Eng. Sci. 14(1), 81–89 (1976)

    Article  MathSciNet  Google Scholar 

  7. Bhattacharyya, S.P., Jena, S.K.: On the stability of a hot layer of micropolar fluid. Int. J. Eng. Sci. 21(9), 1019–1024 (1983)

    Article  MathSciNet  Google Scholar 

  8. Siddheshwar, P.G., Pranesh, S.: Magneto convection in a micropolar fluid. Int. J. Eng. Sci. 36(10), 1173–1181 (1998)

    Article  Google Scholar 

  9. Pranesh, S., Baby, R.: Effect of non-uniform temperature gradient on the onset of Rayleigh-Bénard electro convection in a micropolar fluid. Appl. Math. 3(5), 442–450 (2012)

    Article  MathSciNet  Google Scholar 

  10. Chandrasekhar, S.: Hydrodynamic and Hydro Magnetic Stability. Clarendon Press, Oxford (1961)

    Google Scholar 

  11. Vidal, A., Acrivos, A.: The influence of Coriolis force on surface-tension-driven convection. J. Fluid Mech. 26(4), 807–818 (1966)

    Article  Google Scholar 

  12. McConaghy, G.A., Finlayson, B.A.: Surface tension driven oscillatory instability in a rotating fluid layer. J. Fluid Mech. 39(1), 49–55 (1969)

    Article  Google Scholar 

  13. Shivakumara, I.S., Nanjundappa, C.E.: Effects of Coriolis force and different basic temperature gradients on Marangoni ferroconvection. Acta. Mechanica. 182(1), 113–124 (2006)

    Article  Google Scholar 

  14. Sastry, V.U.K., Rao, V.R.: Numerical solution of thermal instability of a rotating micropolar fluid layer. Int. J. Eng. Sci. 21(5), 449–461 (1983)

    Article  Google Scholar 

  15. Reena, Rana, U.S.: Thermosolutal convection of micropolar rotating fluids saturating a porous medium. Int. J. Eng. Iran. 4, 189–217 (2008)

    Google Scholar 

  16. Joseph, T.V., Manjunath, S.R., Pranesh, S.: Effect of non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni electro-convection in a micropolar fluid. Appl. Math. 4, 1–9 (2013)

    Article  Google Scholar 

  17. Anncy, M., Joseph, T.V., Pranesh, S.: Linear and non-linear analyses of double-diffusive-Chandrasekhar convection coupled with cross-diffusion in micropolar fluid over saturated porous medium. Multidiscip. Model. Mater. Struct. 17, 211–236 (2020)

    Article  Google Scholar 

  18. Hashim, I.: On competition between modes at the onset of Bénard-Marangoni convection in a layer of fluid. ANZIAM J. 43(3), 387–395 (2002)

    Article  MathSciNet  Google Scholar 

  19. Gupta, A.K., Shandil, R.G.: Marangoni convection in a relatively hotter or cooler liquid layer. Proc. Natl. Acad. Sci. 82(2), 103–106 (2012)

    Google Scholar 

  20. Ahmed, S.E., Elshehabey, H.M., Oztop, H.F.: Natural convection of three-dimensional non-Newtonian nanofluids with Marangoni effects and inclined magnetic fields. Int. Commun. Heat Mass Transf. 137, 106288 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riya Baby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baby, R. (2024). Study of Bénard-Marangoni Convection in a Microfluid with Coriolis Force. In: Kamalov, F., Sivaraj, R., Leung, HH. (eds) Advances in Mathematical Modeling and Scientific Computing. ICRDM 2022. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-41420-6_33

Download citation

Publish with us

Policies and ethics