Skip to main content

Thermal and Entropy Management of Nanoliquid in a Discretely Heated Inclined Square Geometry

  • Conference paper
  • First Online:
Advances in Mathematical Modeling and Scientific Computing (ICRDM 2022)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

  • 122 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendaraa, A., Charafi, M.M., Hasnaoui A.: Numerical study of natural convection in a differentially heated square cavity filled with nanofluid in the presence of fins attached to walls in different locations. Phys. Fluids. 31, 052003 (2019). https://doi.org/10.1063/1.5091709

    Article  Google Scholar 

  2. Mohebbi, R., Khalilabad, S.H., Ma, Y.: Effect of \(\gamma \)-Al2O3/water nanofluid on natural convection heat transfer of corrugated \(\varGamma \) shaped cavity: study the different aspect ratio of grooves. J. Appl. Fluid Mech. 12, 1151–1160 (2019). https://doi.org/10.29252/JAFM.12.04.29455

  3. Raizah, Z.A.S., Aly, A.M., Ahmed, S.E.: Natural convection flow of a nanofluid-filled V-shaped cavity saturated with a heterogeneous porous medium: incompressible smoothed particle hydrodynamics analysis. Ain Shams Eng. J. 12, 2033–2046 (2021). https://doi.org/10.1016/j.asej.2020.09.026

    Article  Google Scholar 

  4. Sheikhzadeh, G.A., Arefmanesh, A., Kheirkhah, M.H., Abdollahi, R.: Natural convection of Cu-water nanofluid in a cavity with partially active side walls. Eur. J. Mech. B Fluids 30, 166–176 (2011). https://doi.org/10.1016/j.euromechflu.2010.10.003

    Article  Google Scholar 

  5. Ben-Mansour, R., Habib, M.A.: Use of nanofluids for enhanced natural cooling of discretely heated enclosures. Appl. Mech. Mater. 302, 422–428 (2013). https://doi.org/10.4028/www.scientific.net/amm.302.422

    Article  Google Scholar 

  6. Bhuiyanaa, A.H., Alamb, M.S., Alima M.A.: Natural convection of water-based nanofluids in a square cavity with partially heated of the bottom wall. Proc. Eng. 194, 435–441 (2017). https://doi.org/10.1016/j.proeng.2017.08.168

    Article  Google Scholar 

  7. Kemparaju, S., Swamy, H.A.K., Sankar, M., Mebarek-Oudina, F.: Impact of thermal and solute source-sink combination on thermosolutal convection in a partially active porous annulus. Phys. Scr. 97, 055206 (2022). https://doi.org/10.1088/1402-4896/ac6383

    Article  Google Scholar 

  8. Reddy, N.K., Sankar, M., Jang, B.: Impact of thermal source-sink arrangements on buoyant convection in a nanofluid-filled annular enclosure. J. Heat Transf. (2022). https://doi.org/10.1115/1.4055146

  9. Kaluri, R.S., Basak, T.: Entropy generation minimization versus thermal mixing due to natural convection in differentially and discretely heated square cavities. Numer. Heat Transf. A: Appl. 58, 475–504 (2010). https://doi.org/10.1080/10407782.2010.511982

    Article  Google Scholar 

  10. Oueslati, F., Ben-Beya, B., Lili, T.: Double-diffusive natural convection and entropy generation in an enclosure of aspect ratio 4 with partial vertical heating and salting sources. Alex. Eng. J. 52, 605–625 (2013). https://doi.org/10.1016/j.aej.2013.09.006

    Article  Google Scholar 

  11. T. Armaghani, M.A. Ismael, A.J. Chamkha, Analysis of entropy generation and natural convection in an inclined partially porous layered cavity filled with a nanofluid. Can. J. Phys. 95, 238–252 (2017). https://doi.org/10.1139/cjp-2016-0570

    Article  Google Scholar 

  12. Kefayati, G.H.R., Che-Sidik, N.A.: Simulation of natural convection and entropy generation of non-Newtonian nanofluid in an inclined cavity using Buongiorno’s mathematical model (Part II, entropy generation). Powder Technol. 305, 679–703 (2017). https://doi.org/10.1016/j.powtec.2016.10.077

    Article  Google Scholar 

  13. Rashad, A.M., Armaghani, T., Chamkha, A.J., Mansour, M.A.: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chin. J. Phys. 56, 193–211 (2018). https://doi.org/10.1016/j.cjph.2017.11.026

    Article  Google Scholar 

  14. Jino, L., Kumar, A.V.: Mathematical modelling of MHD natural convection in a linearly heated porous cavity. Math. Model. Eng. Probl. 8, 149–157 (2021). https://doi.org/10.18280/mmep.080119

    Article  Google Scholar 

  15. Jino, L., Kumar, A.V.: Cu-water nanofluid MHD quadratic natural convection on square porous cavity. Int. J. Appl. Comput. Math. 7, 164 (2021). https://doi.org/10.1007/s40819-021-01103-5

    Article  MathSciNet  Google Scholar 

  16. Kumar, A.V., Lawrence, J., Saravanakumar, G.: Fluid friction/heat transfer irreversibility and heat function study on MHD free convection within the MWCNT-water nanofluid-filled porous cavity. Heat Transf. 51, 4247–4267 (2022). https://doi.org/10.1002/htj.22498

    Article  Google Scholar 

  17. Kiran, S., Sankar, M., Swamy, H.A.K., Makinde, O.D.: Unsteady buoyant convective flow and thermal transport analysis in a nonuniformly heated annular geometry. Comput. Therm. Sci. 14, 1–17 (2022). https://doi.org/10.1615/ComputThermalScien.2021039723

    Article  Google Scholar 

  18. Swamy, H.A.K., Sankar, M., Reddy, N.K.: Analysis of entropy generation and energy transport of Cu-water nanoliquid in a tilted vertical porous annulus. Int. J. Appl. Comput. Math. 8, 10 (2022). https://doi.org/10.1007/s40819-021-01207-y

    Article  MathSciNet  Google Scholar 

  19. Swamy, H.A.K., Sankar, M., Reddy, N.K., Al-Manthari, M.S.: Double diffusive convective transport and entropy generation in an annular space filled with alumina-water nanoliquid. Eur. Phys. J. Spec. Top. 231, 2781–2800 (2022). https://doi.org/10.1140/epjs/s11734-022-00591-w

    Article  Google Scholar 

  20. Swamy, H.A.K., Sankar, M., Do, Y.: Entropy and energy analysis of MHD nanofluid thermal transport in a non-uniformly heated annulus. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2145522

  21. Parvin, S., Chamkha, A.J.: An analysis on free convection flow, heat transfer and entropy generation in an odd-shaped cavity filled with nanofluid. Int. Commun. Heat Mass Transf. 54, 8–17 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.02.031

    Article  Google Scholar 

  22. Armaghani, T., Rashad, A.M., Vahidifar, O., Mishra, S.R., Chamkha, A.J.: Effects of discrete heat source location on heat transfer and entropy generation of nanofluid in an open inclined L-shaped cavity. Int. J. Numer. Methods Heat Fluid Flow. 29, 1363–1377 (2019). https://doi.org/10.1108/HFF-07-2018-0412

    Article  Google Scholar 

  23. Dogonchi, A.S., Sadeghi, M.S., Ghodrat, M., Chamkha, A.J., Elmasry, Y., Alsulami, R.: Natural convection and entropy generation of a nanoliquid in a crown wavy cavity: effect of thermo-physical parameters and cavity shape. Case Stud. Therm. Eng. 27, 101208 (2021). https://doi.org/10.1016/j.csite.2021.101208

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prasanna, B.M.R., Kumara Swamy, H.A., Sankar, M., Sudheendra, S.R. (2024). Thermal and Entropy Management of Nanoliquid in a Discretely Heated Inclined Square Geometry. In: Kamalov, F., Sivaraj, R., Leung, HH. (eds) Advances in Mathematical Modeling and Scientific Computing. ICRDM 2022. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-41420-6_31

Download citation

Publish with us

Policies and ethics