Skip to main content

Conjugate Buoyant Convection of Nanoliquids in a Porous Saturated Annulus

  • Conference paper
  • First Online:
Advances in Mathematical Modeling and Scientific Computing (ICRDM 2022)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

  • 121 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khan, J., Kumar, R.: Natural convection in vertical annuli: a numerical study for constant heat flux on the inner wall. ASME J. Heat Transfer-Trans. ASME 111(4), 909–915 (1989)

    Article  Google Scholar 

  2. Sankar, M., Kim, B., Lopez, J.M., Do, Y.: Thermosolutal convection from a discrete heat and solute source in a vertical porous annulus. Int. J. Heat Mass Transf. 55(15–16), 4116–4128 (2012)

    Article  Google Scholar 

  3. Lopez, J.M., Sankar, M., Do, Y.: Constant-flux discrete heating in a unit aspect-ratio annulus. Fluid Dyn. Res. 44, 0655077 (2012)

    Article  MathSciNet  Google Scholar 

  4. Abouali, O., Falahatpisheh, A.: Numerical investigation of natural convection of \(Al_{2}O_3\) nanofluid in vertical annuli. Heat Mass Transf. 46(1), 15–23 (2009)

    Google Scholar 

  5. Cadena-de la Pe\(\tilde {n}\)a, N.L., Rivera-Solorio, C.I., Pay\(\acute {a}\)n-Rodr\(\acute {i}\)guez, L.A., Garc\(\acute {i}\)a-Cu\(\acute {e}\)llar, A.J., L\(\acute {o}\)pez-Salinas, J.L.: Experimental analysis of natural convection in vertical annuli filled with AlN and \(TiO_2\)/mineral oil-based nanofluids. Int. J. Therm. Sci. 111, 138–145 (2017).

    Google Scholar 

  6. Mebarek-Oudina, F.: Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transf.-Asian Res. 48(1), 135–147 (2019)

    Article  Google Scholar 

  7. Pushpa, B.V., Sankar, M., Mebarek-Oudina, F.: Buoyant convective flow and heat dissipation of Cu–\(H_2\)O nanoliquids in an annulus through a thin baffle. J. Nanofluids 10, 292–304 (2021)

    Article  Google Scholar 

  8. Reddy, N.K., Sankar, M.: Buoyant heat transfer of nanofluids in a vertical porous annulus: a comparative study of different models. Int. J. Numer. Methods Heat Fluid Flow 33(2), 477–509 (2023)

    Article  Google Scholar 

  9. Swamy, H.A.K., Sankar, M., Reddy, N.K.: Analysis of entropy generation and energy transport of Cu-water nanoliquid in a tilted vertical porous annulus. Int. J. Appl. Comput. Math. 8(1), 10 (2022)

    Article  MathSciNet  Google Scholar 

  10. Kaminski, D.A., Prakash, C.: Conjugate natural convection in a square enclosure: effect of conduction in one of the vertical walls. Int. J. Heat Mass Transf. 29(12), 1979–1988 (1986)

    Article  Google Scholar 

  11. Sheremet, M.A., Pop, I.: Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int. J. Heat Mass Transf. 79, 137–145 (2014)

    Article  Google Scholar 

  12. Alsabery, A.I., Chamkha, A.J., Saleh, H., Hashim, I.: Heatline visualization of conjugate natural convection in a square cavity filled with nanofluid with sinusoidal temperature variations on both horizontal walls. Int. J. Heat Mass Transf. 100, 835–850 (2016)

    Article  Google Scholar 

  13. Zahan, I., Alim, M.A.: Effect of conjugate heat transfer on flow of nanofluid in a rectangular enclosure. Int. J. Heat Technol. 36(2), 397–405 (2018)

    Article  Google Scholar 

  14. Sankar, M., Reddy, N.K., Do, Y.: Conjugate buoyant convective transport of nanofluids in an enclosed annular geometry. Sci. Rep. 11(1), 1–22 (2021)

    Article  Google Scholar 

  15. Guo, Z.: A review on heat transfer enhancement with nanofluids. J. Enhanc. Heat Transf. 27(1), 1–70 (2020)

    Article  MathSciNet  Google Scholar 

  16. Mebarek Oudina, F., Chabani, I.: Review on nano-fluids applications and heat transfer enhancement techniques in different enclosures. J. Nanofluids 11(2), 155–168 (2022)

    Article  Google Scholar 

  17. N. Manjunatha, R. Sumithra, Effects of heat source/sink on Darcian-Benard-magneto-Marangoni convective instability in a composite layer subjected to nonuniform temperature gradients. TWMS J. App. Eng. Math. 12(3), 969–984 (2022)

    Google Scholar 

  18. Manjunatha, N., Sumithra, R., Vanishree, R.K., Influence of constant heat source/sink on non-Darcian-Benard double diffusive Marangoni convection in a composite layer system. J. Appl. Math. Inf. 40(1–2), 99–115 (2022)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rex Macedo Arokiaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pushpa, B.V., Arokiaraj, A.R.M., Baskaran, G., Jagadeesha, R.D. (2024). Conjugate Buoyant Convection of Nanoliquids in a Porous Saturated Annulus. In: Kamalov, F., Sivaraj, R., Leung, HH. (eds) Advances in Mathematical Modeling and Scientific Computing. ICRDM 2022. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-41420-6_25

Download citation

Publish with us

Policies and ethics