Skip to main content

Check Alternating Patterns: A Physical Zero-Knowledge Proof for Moon-or-Sun

Part of the Lecture Notes in Computer Science book series (LNCS,volume 14128)

Abstract

A zero-knowledge proof (ZKP) allows a party to prove to another party that it knows some secret, such as the solution to a difficult puzzle, without revealing any information about it. We propose a physical zero-knowledge proof using only a deck of playing cards for solutions to a pencil puzzle called Moon-or-Sun. In this puzzle, one is given a grid of cells on which rooms, marked by thick black lines surrounding a connected set of cells, may contain a number of cells with a moon or a sun symbol. The goal is to find a loop passing through all rooms exactly once, and in each room either passes through all cells with a moon, or all cells with a sun symbol.

Finally, whenever the loop passes from one room to another, it must go through all cells with a moon if in the previous room it passed through all cells with a sun, and visa-versa. This last rule constitutes the main challenge for finding a physical zero-knowledge proof for this puzzle, as this must be verified without giving away through which borders the loop enters or leaves a given room. We design a card-based zero-knowledge proof of knowledge protocol for Moon-or-Sun solutions, together with an analysis of their properties. Our technique of verifying the alternation of a pattern along a non-disclosed path might be of independent interest for similar puzzles.

Keywords

  • Physical Zero-knowledge Proof
  • Pencil Puzzle
  • Card-based Cryptography
  • Moon-or-Sun
  • Nikoli Puzzle

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.nikoli.co.jp/en/puzzles/moon_or_sun/.

  2. 2.

    Remember that the value of a commitment on a cell indicates the presence of line passing through the cell.

  3. 3.

    This means that rule 3 can be simultaneously verified for the target room.

References

  1. Nikoli, Moon-or-Sun. https://www.nikoli.co.jp/en/puzzles/moon_or_sun/

  2. Ben-Or, M., et al.: Everything provable is provable in zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_4

    CrossRef  Google Scholar 

  3. Boer, B.: More efficient match-making and satisfiability the five card trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23

    CrossRef  Google Scholar 

  4. Bultel, X., Dreier, J., Dumas, J., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: Fun with Algorithms. LIPIcs, vol. 49, pp. 8:1–8:20. Schloss Dagstuhl, Dagstuhl (2016)

    Google Scholar 

  5. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_8

    CrossRef  Google Scholar 

  6. Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from Sudoku to Nonogram. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 102–112. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13122-6_12

    CrossRef  Google Scholar 

  7. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_14

    CrossRef  Google Scholar 

  8. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput. Syst. 44(2), 245–268 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Isuzugawa, R., Miyahara, D., Mizuki, T.: Zero-knowledge proof protocol for cryptarithmetic using dihedral cards. In: Kostitsyna, I., Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp. 51–67. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87993-8_4

    CrossRef  Google Scholar 

  10. Iwamoto, C., Ide, T.: Moon-or-Sun, Nagareru, and Nurimeizu are NP-complete. IEICE Trans. Fundam. 105(9), 1187–1194 (2022)

    CrossRef  Google Scholar 

  11. Komano, Y., Mizuki, T.: Physical zero-knowledge proof protocol for Topswops. In: Su, C., Gritzalis, D., Piuri, V. (eds.) ISPEC 2022. LNCS, vol. 13620, pp. 537–553. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21280-2_30

    CrossRef  Google Scholar 

  12. Komano, Y., Mizuki, T.: Card-based zero-knowledge proof protocol for pancake sorting. In: Bella, G., Doinea, M., Janicke, H. (eds.) SecITC 2022. LNCS, vol. 13809, pp. 222–239. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-32636-3_13

    CrossRef  Google Scholar 

  13. Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to construct physical zero-knowledge proofs for puzzles with a “single loop” condition. Theor. Comput. Sci. 888, 41–55 (2021)

    Google Scholar 

  14. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for Kakuro. IEICE Trans. Fundam. 102-A(9), 1072–1078 (2019)

    Google Scholar 

  15. Miyahara, D., Ueda, I., Hayashi, Y., Mizuki, T., Sone, H.: Evaluating card-based protocols in terms of execution time. Int. J. Inf. Secur. 20, 729–740 (2021)

    CrossRef  MATH  Google Scholar 

  16. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 162–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39074-6_16

    CrossRef  Google Scholar 

  17. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36

    CrossRef  Google Scholar 

  18. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP for connectivity: applications to Nurikabe, Hitori, and Heyawake. New Gener. Comput. 40, 149–171 (2022)

    CrossRef  MATH  Google Scholar 

  19. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP protocol for Nurimisaki. In: Devismes, S., Petit, F., Altisen, K., Luna, G.A.D., Anta, A.F. (eds.) SSS 2022. LNCS, vol. 13751, pp. 285–298. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21017-4_19

    CrossRef  Google Scholar 

  20. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Hide a liar: card-based ZKP protocol for Usowan. In: Du, D., Du, D., Wu, C., Xu, D. (eds.) TAMC 2022. LNCS, vol. 13571, pp. 201–217. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20350-3_17

    CrossRef  Google Scholar 

  21. Robert, L., Miyahara, D., Lafourcade, P., Libralesso, L., Mizuki, T.: Physical zero-knowledge proof and NP-completeness proof of Suguru puzzle. Inf. Comput. 285, 1–14 (2022)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Robertson, N., Sanders, D.P., Seymour, P.D., Thomas, R.: Efficiently four-coloring planar graphs. In: Miller, G.L. (ed.) ACM Symposium on the Theory of Computing, pp. 571–575. ACM (1996)

    Google Scholar 

  23. Ruangwises, S.: An improved physical ZKP for Nonogram. In: Du, D.-Z., Du, D., Wu, C., Xu, D. (eds.) COCOA 2021. LNCS, vol. 13135, pp. 262–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92681-6_22

    CrossRef  Google Scholar 

  24. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink puzzle and k vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021)

    CrossRef  Google Scholar 

  25. Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applications to bridges puzzle and other problems. In: Kostitsyna, I., Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp. 149–163. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87993-8_10

    CrossRef  MATH  Google Scholar 

  26. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with 2n cards. Theor. Comput. Sci. 887, 99–110 (2021)

    CrossRef  MathSciNet  MATH  Google Scholar 

  27. Ruangwises, S., Itoh, T.: How to physically verify a rectangle in a grid: a physical ZKP for Shikaku. In: Fraigniaud, P., Uno, Y. (eds.) Fun with Algorithms. LIPIcs, vol. 226, pp. 24:1–24:12. Schloss Dagstuhl (2022)

    Google Scholar 

  28. Ruangwises, S., Itoh, T.: Physical ZKP for Makaro using a standard deck of cards. In: Du, D., Du, D., Wu, C., Xu, D. (eds.) TAMC 2022. LNCS, vol. 13571, pp. 43–54. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20350-3_5

    CrossRef  MATH  Google Scholar 

  29. Ruangwises, S., Itoh, T.: Two standard decks of playing cards are sufficient for a ZKP for Sudoku. New Gener. Comput. 40(1), 49–65 (2022)

    CrossRef  Google Scholar 

  30. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020)

    CrossRef  MathSciNet  MATH  Google Scholar 

  31. Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE Trans. Fundam. 100-A(9), 1900–1909 (2017)

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees, whose comments have helped us improve the presentation of the paper. The fourth author was supported in part by Kayamori Foundation of Informational Science Advancement and JSPS KAKENHI Grant Number JP23H00479. The third and fifth authors were partially supported by the French ANR project ANR-18-CE39-0019 (MobiS5). Other programs also fund to write this paper, namely the French government research program “Investissements d’Avenir” through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25) and the IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01). Finally, the French ANR project DECRYPT (ANR-18-CE39-0007) and SEVERITAS (ANR-20-CE39-0009) also subsidize this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiki Miyahara .

Editor information

Editors and Affiliations

A Full Description of XOR and Copy Protocols

A Full Description of XOR and Copy Protocols

XOR Protocol. Given commitments to \(a,b\in \{0,1\}\), the Mizuki–Sone XOR protocol [17] outputs a commitment to \(a\oplus b\):

figure an

This protocol proceeds as follows.

  1. 1.

    Rearrange the sequence: .

  2. 2.

    Apply a random bisection cut: .

  3. 3.

    Rearrange the sequence: .

  4. 4.

    Reveal the first and second cards in the sequence to obtain the output commitment as follows: .

Copy Protocol. Given a commitment to \(a\in \{0,1\}\) along with two commitments to 0, the Mizuki–Sone copy protocol [17] outputs two commitments to a:

figure as

This protocol proceeds as follows.

  1. 1.

    Rearrange the sequence as follows:

    figure at
  2. 2.

    Apply a random bisection cut to the sequence as follows:

    figure au
  3. 3.

    Rearrange the sequence as follows:

    figure av
  4. 4.

    Reveal the first and second cards in the sequence to obtain the output commitments as follows:

    figure aw

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hand, S., Koch, A., Lafourcade, P., Miyahara, D., Robert, L. (2023). Check Alternating Patterns: A Physical Zero-Knowledge Proof for Moon-or-Sun. In: Shikata, J., Kuzuno, H. (eds) Advances in Information and Computer Security. IWSEC 2023. Lecture Notes in Computer Science, vol 14128. Springer, Cham. https://doi.org/10.1007/978-3-031-41326-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41326-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41325-4

  • Online ISBN: 978-3-031-41326-1

  • eBook Packages: Computer ScienceComputer Science (R0)