Skip to main content

Neuromuscular Theory and the Stomatognathic Triad: Treatment Objectives in Neuromuscular Orthodontics

  • Chapter
  • First Online:
Neuromuscular Orthodontics
  • 135 Accesses

Abstract

The application of the Neuromuscular Theory in orthodontic diagnosis and treatment serves as the bedrock of Neuromuscular Orthodontics. This chapter aims to elucidate the differences between the theory’s application in prosthetics and the more recent functional interpretation of dynamic occlusion for orthodontics. It is essential to recognize that achieving a neuromuscular balanced occlusion requires different orthodontic objectives than traditional approaches. By embracing this modern perspective, practitioners can more effectively evaluate and manage occlusal disorders using Neuromuscular Orthodontics techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Skeletal Class II definition, in general, orthodontics refers to a discrepancy in the relationship of the skeletal bases and does little to consider the total development of the maxilla and mandible. For this reason, in N.O. positional Class II represents the majority of Class II with OJ and Class II/2, while a very small amount of Class II skeletal are considered so because of a small mandible in relation to age, sex, and cranial base. The sagittal position of the maxilla in positional Class II is usually normal.

References

  1. Andrews LF. The six keys to normal occlusion. Am J Orthod. 1972;62(3):296–309.

    Article  PubMed  Google Scholar 

  2. Graf H. Bruxism. Dent Clin N Am. 1969;13(3):659–65.

    Article  PubMed  Google Scholar 

  3. Pancherz H. The nature of class II relapse after herbst appliance treatment: a cephalometric long-term investigation. Am J Orthod Dentofac Orthop. 1991;100(3):220–33.

    Article  Google Scholar 

  4. Lewis B. Orthodontic retention. Dent Nurs. 2008;4(9):496–503.

    Article  Google Scholar 

  5. Thilander B. Biological basis for orthodontic relapse. Semin Orthod. 2000;6(3):195–205.

    Article  Google Scholar 

  6. Moro A, et al. Stability of class II corrections with removable and fixed functional appliances: a literature review. J World Fed Orthod. 2020;9(2):56–67.

    PubMed  Google Scholar 

  7. Strang RHW. The fallacy of denture expansion as a treatment procedure*. Angle Orthod. 1949;19(1):12–22.

    Google Scholar 

  8. Lundström AF. Malocclusion of the teeth regarded as a problem in connection with the apical base. Int J Orthod Oral Surg Radiogr. 1925;11(10):933–41.

    Article  Google Scholar 

  9. Breckon J. The 20 principles of the Alexander discipline (2008). Eur J Orthod. 2009;31(2):213.

    Article  Google Scholar 

  10. Moimaz SAS, et al. Longitudinal study of habits leading to malocclusion development in childhood. BMC Oral Health. 2014;14(1):96.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mew JRC. The postural basis of malocclusion: a philosophical overview. Am J Orthod Dentofac Orthop. 2004;126(6):729–38.

    Article  Google Scholar 

  12. Meyers A, Hertzberg J. Bottle-feeding and malocclusion: is there an association? Am J Orthod Dentofac Orthop. 1988;93(2):149–52.

    Article  Google Scholar 

  13. Lipp MJ. Temporomandibular symptoms and occlusion: a review of the literature & the concept. N Y State Dent J. 1990;56(9):58–66.

    PubMed  Google Scholar 

  14. Bales JM, Epstein JB. The role of malocclusion and orthodontics in temporomandibular disorders. J Can Dent Assoc. 1994;60(10):899–905.

    PubMed  Google Scholar 

  15. Seligman DA, Pullinger AG. The role of functional occlusal relationships in temporomandibular disorders: a review. J Craniomandib Disord. 1991;5(4):265–79.

    PubMed  Google Scholar 

  16. Greene CS. Etiology of temporomandibular disorders. Semin Orthod. 1995;1(4):222–8.

    Article  PubMed  Google Scholar 

  17. McNamara JA Jr, Seligman DA, Okeson JP. Occlusion, Orthodontic treatment, and temporomandibular disorders: a review. J Orofac Pain. 1995;9(1):73–90.

    PubMed  Google Scholar 

  18. Conti PC, et al. A cross-sectional study of prevalence and etiology of signs and symptoms of temporomandibular disorders in high school and university students. J Orofac Pain. 1996;10(3):254–62.

    PubMed  Google Scholar 

  19. Rodrigues-Garcia RC, et al. Effects of major Class II occlusal corrections on temporomandibular signs and symptoms. J Orofac Pain. 1998;12(3):185–92.

    PubMed  Google Scholar 

  20. Kerstein RB. Treatment of myofascial pain dysfunction syndrome with occlusal therapy to reduce lengthy disclusion time—a recall evaluation. Cranio. 1995;13(2):105–15.

    Article  PubMed  Google Scholar 

  21. Raustia AM, Pirttiniemi PM, Pyhtinen J. Correlation of occlusal factors and condyle position asymmetry with signs and symptoms of temporomandibular disorders in young adults. Cranio. 1995;13(3):152–6.

    Article  PubMed  Google Scholar 

  22. Willis WA. The effectiveness of an extreme canine-protected splint with limited lateral movement in treatment of temporomandibular dysfunction. Am J Orthod Dentofac Orthop. 1995;107(3):229–34.

    Article  Google Scholar 

  23. Hobo S. Occlusion in temporomandibular disorders: treatment after occlusal splint therapy. Int Dent J. 1996;46(3):146–55.

    PubMed  Google Scholar 

  24. Sonnesen L, Bakke M, Solow B. Malocclusion traits and symptoms and signs of temporomandibular disorders in children with severe malocclusion. Eur J Orthod. 1998;20(5):543–59.

    Article  PubMed  Google Scholar 

  25. Fushima K, Inui M, Sato S. Dental asymmetry in temporomandibular disorders. J Oral Rehabil. 1999;26(9):752–6.

    Article  PubMed  Google Scholar 

  26. Liu ZJ, et al. Electromyographic examination of jaw muscles in relation to symptoms and occlusion of patients with temporomandibular joint disorders. J Oral Rehabil. 1999;26(1):33–47.

    Article  PubMed  Google Scholar 

  27. Cooper BC. The role of bioelectronic instrumentation in the documentation and management of temporomandibular disorders. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83(1):91–100.

    Article  PubMed  Google Scholar 

  28. King EW. Relapse of orthodontic treatment. Angle Orthod. 1974;44(4):300–15.

    PubMed  Google Scholar 

  29. Picchioni P, Soli P, Pirini D. Treatment of orofacial musculature imbalance. Mondo Ortod. 1990;15(1):71–90.

    PubMed  Google Scholar 

  30. Gaudy JF, et al. Functional anatomy of the human temporal muscle. Surg Radiol Anat. 2001;23(6):389–98.

    Article  PubMed  Google Scholar 

  31. Kageyama M, Itoh I. Orientation of the deep part of the human temporal muscle and morphological study of the infratemporal crest. Jpn J Oral Biol. 2003;45(6):397–406.

    Article  Google Scholar 

  32. Bravetti P, et al. Histological study of the human temporo-mandibular joint and its surrounding muscles. Surg Radiol Anat. 2004;26(5):371–8.

    Article  PubMed  Google Scholar 

  33. Matsunaga K, et al. An anatomical study of the muscles that attach to the articular disc of the temporomandibular joint. Clin Anat. 2009;22(8):932–40.

    Article  PubMed  Google Scholar 

  34. Schmolke C. The relationship between the temporomandibular joint capsule, articular disc and jaw muscles. J Anat. 1994;184(Pt 2):335–45.

    PubMed  PubMed Central  Google Scholar 

  35. Lerman MD. The muscle engram: the reflex that limits conventional occlusal treatment. Cranio. 2011;29(4):297–303.

    Article  PubMed  Google Scholar 

  36. Lerman MD. A revised view of the dynamics, physiology, and treatment of occlusion: a new paradigm. Cranio. 2004;22(1):50–63.

    Article  PubMed  Google Scholar 

  37. Foletti J-M, et al. Is atypical swallowing associated with relapse in orthognathic patients? A retrospective study of 256 patients. J Oral Maxillofac Surg. 2018;76(5):1084–90.

    Article  PubMed  Google Scholar 

  38. Brand RA. Biographical sketch: Julius Wolff, 1836-1902. Clin Orthop Relat Res. 2010;468(4):1047–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gilheaney O, Stassen LF, Walshe M. Prevalence, nature, and management of oral stage dysphagia in adults with temporomandibular joint disorders: findings from an Irish cohort. J Oral Maxillofac Surg. 2018;76(8):1665–76.

    Article  PubMed  Google Scholar 

  40. Maffei C, et al. Videofluoroscopic evaluation of mastication and swallowing in individuals with TMD. Braz J Otorhinolaryngol. 2012;78(4):24–8.

    Article  PubMed  Google Scholar 

  41. Solow B, Siersbæk-Nielsen S, Greve E. Airway adequacy, head posture, and craniofacial morphology. Am J Orthod. 1984;86(3):214–23.

    Article  PubMed  Google Scholar 

  42. Solow B, Tallgren A. Head position and craniofacial morphology. Mondo Ortod. 1977;19(6):75–99.

    PubMed  Google Scholar 

  43. Solow B, Tallgren A. Head posture and craniofacial morphology. Am J Phys Anthropol. 1976;44(3):417–35.

    Article  PubMed  Google Scholar 

  44. Sandikçioğlu M, Skov S, Solow B. Atlas morphology in relation to craniofacial morphology and head posture. Eur J Orthod. 1994;16(2):96–103.

    Article  PubMed  Google Scholar 

  45. Leitao P, Nanda RS. Relationship of natural head position to craniofacial morphology. Am J Orthod Dentofac Orthop. 2000;117(4):406–17.

    Article  Google Scholar 

  46. Kim P, Sarauw M, Sonnesen L. Cervical vertebral column morphology and head posture in preorthodontic patients with anterior open bite. Am J Orthod Dentofac Orthop. 2014;145:359–66.

    Article  Google Scholar 

  47. Hellsing E, et al. The relationship between craniofacial morphology, head posture and spinal curvature in 8, 11 and 15-year-old children. Eur J Orthod. 1987;9(1):254–64.

    Article  PubMed  Google Scholar 

  48. Vig PS, Showfety KJ, Phillips C. Experimental manipulation of head posture. Am J Orthod. 1980;77(3):258–68.

    Article  PubMed  Google Scholar 

  49. Ohnmeiß M, et al. Therapeutic effects of functional orthodontic appliances on cervical spine posture: a retrospective cephalometric study. Head Face Med. 2014;10:7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Falla D, et al. Effect of neck exercise on sitting posture in patients with chronic neck pain. Phys Ther. 2007;87(4):408–17.

    Article  PubMed  Google Scholar 

  51. Kielnar R, et al. The influence of cervical spine rehabilitation on bioelectrical activity (sEMG) of cervical and masticatory system muscles. PLoS One. 2021;16(4):e0250746.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dennis AK, et al. Alleviation of neck pain by the non-surgical rehabilitation of a pathologic cervical kyphosis to a normal lordosis: a CBP(®) case report. J Phys Ther Sci. 2018;30(4):654–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Flores HF, Ottone NE, Fuentes R. Analysis of the morphometric characteristics of the cervical spine and its association with the development of temporomandibular disorders. Cranio. 2017;35(2):79–85.

    Article  PubMed  Google Scholar 

  54. Silva RMVD, et al. The influence of temporomandibular disorders in neck pain and posture. Man Ther Posturology Rehabil J. 2016;14

    Google Scholar 

  55. Wolford LM, Cardenas L. Idiopathic condylar resorption: diagnosis, treatment protocol, and outcomes. Am J Orthod Dentofac Orthop. 1999;116(6):667–77.

    Article  Google Scholar 

  56. Iunes D, et al. Craniocervical posture analysis in patients with temporomandibular disorder. Braz J Phys Ther. 2009;13:89–95.

    Article  Google Scholar 

  57. Matheus RA, et al. The relationship between temporomandibular dysfunction and head and cervical posture. J Appl Oral Sci. 2009;17(3):204–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Olivo SA, et al. The association between head and cervical posture and temporomandibular disorders: a systematic review. J Orofac Pain. 2006;20:1.

    Google Scholar 

  59. Tanimoto K, et al. Characteristics of the maxillofacial morphology in patients with idiopathic mandibular condylar resorption. J Clin Med. 2022;11:4.

    Article  Google Scholar 

  60. Schnall RP, Sheffy JK, Penzel T. Peripheral arterial tonometry–PAT technology. Sleep Med Rev. 2022;61:101566.

    Article  PubMed  Google Scholar 

  61. Xiang M, et al. Changes in airway dimensions following functional appliances in growing patients with skeletal class II malocclusion: a systematic review and meta-analysis. Int J Pediatr Otorhinolaryngol. 2017;97:170–80.

    Article  PubMed  Google Scholar 

  62. Ali B, Shaikh A, Fida M. Changes in oro-pharyngeal airway dimensions after treatment with functional appliance in class ii skeletal pattern. J Ayub Med Coll Abbottabad. 2015;27(4):759–63.

    PubMed  Google Scholar 

  63. Hourfar J, et al. Effects of two different removable functional appliances on depth of the posterior airway space. J Orofac Orthop. 2017;78(2):166–75.

    Article  PubMed  Google Scholar 

  64. Han S, et al. Long-term pharyngeal airway changes after bionator treatment in adolescents with skeletal Class II malocclusions. Korean J Orthod. 2014;44(1):13–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ganesh G, Tripathi T. Effect of fixed functional appliances on pharyngeal airway dimensions in skeletal class II individuals—a scoping review. J Oral Biol Craniofac Res. 2021;11(4):511–23.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pavoni C, et al. Orthopaedic treatment effects of functional therapy on the sagittal pharyngeal dimensions in subjects with sleep-disordered breathing and Class II malocclusion. Acta Otorhinolaryngol Ital. 2017;37(6):479–85.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mirhashemi A, Bahrami R. Long-term stability of growth modification treatment in children with obstructive sleep Apnea; a systematic review. Iran J Orthod. 2021;16(1):1–7.

    Google Scholar 

  68. Giuca MR, et al. Pediatric obstructive sleep Apnea syndrome: emerging evidence and treatment approach. ScientificWorldJournal. 2021;2021:5591251.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kannan A, Sathyanarayana HP, Padmanabhan S. Effect of functional appliances on the airway dimensions in patients with skeletal class II malocclusion: a systematic review. J Orthod Sci. 2017;6(2):54–64.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bariani RCB, et al. Effectiveness of functional orthodontic appliances in obstructive sleep apnea treatment in children: literature review. Braz J Otorhinolaryngol. 2022;88:263–78.

    Article  PubMed  Google Scholar 

  71. Castillo JL. Maxillary expansion may increase airway dimensions and improve breathing. J Evid Based Dent Pract. 2012;12(1):14–7.

    Article  PubMed  Google Scholar 

  72. Taki AA and Thabit A. Changes in pharyngeal airway dimensions, hyoid position, and head posture after rapid palatal expansion and face mask therapy. 2014. Journal of American Science 2014;10(10). http://www.jofamericanscience.org.

  73. Ahn H-W, Kim S-J. Surgical maxillary expansion for OSA adults with nasal obstruction. In: Kim S-J, Kim KB, editors. Orthodontics in obstructive sleep Apnea patients: a guide to diagnosis, treatment planning, and interventions. Cham: Springer International Publishing; 2020. p. 65–79.

    Chapter  Google Scholar 

  74. Quinzi V, et al. Efficacy of rapid maxillary expansion with or without previous adenotonsillectomy for Pediatric obstructive sleep Apnea syndrome based on polysomnographic data: a systematic review and meta-analysis. Appl Sci. 2020;10(18):6485.

    Article  Google Scholar 

  75. Remy F, et al. Management of the pediatric OSAS: what about simultaneously expand the maxilla and advance the mandible? A retrospective non-randomized controlled cohort study. Sleep Med. 2022;90:135–41.

    Article  PubMed  Google Scholar 

  76. DDS, D.E.R. A more effective Bite Registration technique for Dental Sleep Appliances; the inclusion of increased vertical dimension (3D) over the traditional 2D techniques. Pantera Dental Clinical Study Series, 2016.

    Google Scholar 

  77. Hu JC, Comisi JC. Vertical dimension in dental sleep medicine oral appliance therapy. Gen Dent. 2020;68(4):69–76.

    PubMed  Google Scholar 

  78. Boricean ID, Bărar A. Understanding ocular torticollis in children. Oftalmologia. 2011;55(1):10–26.

    PubMed  Google Scholar 

  79. Silvestrini-Biavati A, et al. Clinical association between teeth malocclusions, wrong posture and ocular convergence disorders: an epidemiological investigation on primary school children. BMC Pediatr. 2013;13(1):1–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savastano, F. (2023). Neuromuscular Theory and the Stomatognathic Triad: Treatment Objectives in Neuromuscular Orthodontics. In: Neuromuscular Orthodontics. Springer, Cham. https://doi.org/10.1007/978-3-031-41295-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41295-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41294-3

  • Online ISBN: 978-3-031-41295-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics