Abstract
Although there are improvements in human survival as a result of the accessibility of powerful antibiotics, this gain is approaching its limit due to the changing climate and development of resistance to therapeutic agents for the treatment of microbial infections. The fact that a high prevalence of antimicrobial resistance (AMR) significantly decreases the ability to treat infections effectively, increasing complications, hospitalizations, and unnecessary costs to healthcare is even more obvious. African nations are the hardest affected, since they have less access to new antibiotics, are under more financial strain, and are unable to pay for second-line antibiotics. Additionally, the inadequate health systems in the majority of African nations raise the risk of an increase in AMR and its effects. Action is therefore needed at all levels to stem the flow of an oncoming climate catastrophe. Antimicrobial resistance has no negative effects on a microbial fitness, making it crucial to stop it from occurring as a result of climate change. This chapter sought to provide evidence base for our understanding of AMR and climate change by taking a public health-focused approach. Additionally, it shed light on the aspects of climate change on the spread and proliferation of antibiotic resistance in Africa.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agabou, A., Lezzar, N., Ouchenane, Z., Khemissi, S., Satta, D., Sotto, A., Lavigne, J. P., & Pantel, A. (2016). Clonal relationship between human and avian ciprofloxacin-resistant Escherichia coli isolates in North-Eastern Algeria. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology, 35(2), 227–234. https://doi.org/10.1007/s10096-015-2534-3
Allcock, S., Young, E., Holmes, M., Gurdasani, D., Dougan, G., Sandhu, M., et al. (2017). Antimicrobial resistance in human populations: challenges and opportunities. Global Health, Epidemiology and Genomics, 2. https://doi.org/10.1017/gheg.2017.4
Araya P, Hug J, Joy G, Oschmann F, Rubinstein S. (2016). The impact of water and sanitation on diarrhoeal disease burden and over-consumption of antibiotics. Available from: https://amr-review.org/sites/default/iles/LSE% 20AMR% 20Capstone.pdf. Accessed 17 Mar 2022
Ayukekbong, J. A., Ntemgwa, M., & Atabe, A. N. (2019). The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrobial Resistance and Infection Control, 6(1), 1–8. https://doi.org/10.1186/s13756-017-0208-x
Babinszky, L., Halas, V., & Verstegen, M. W. A. (2011). Impacts of climate change on animal production and quality of animal food products in climate change – Socioeconomic effects. https://doi.org/10.5772/23840
Baker-Austin, C., Trinanes, J., Taylor, N., Harnell, R., Siitonen, A., & Martinez-Urtaza, J. (2013). Emerging Vibrio risk at high latitudes in response to ocean warming. Nature Climate Change, 3, 73–77. https://doi.org/10.1038/nclimate1628
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Science Data, 5, 180214. https://doi.org/10.1038/sdata.2018.214
Bradley, D. J. (1993). Human tropical diseases in a changing environment. Ciba Foundation Symposium, 175, 146–162.
Chukwu, M. O., Abia, A. L. K., Ubomba-Jaswa, E., Obi, L., & Dewar, J. B. (2019). Characterization and phylogenetic analysis of campylobacter species isolated from paediatric stool and water samples in the northwest province, South Africa. International Journal of Environmental Research and Public Health, 16, 2205. https://doi.org/10.3390/ijerph16122205
Clift, C. (2019). Review of progress on antimicrobial resistance: Background and analysis. In Security CoGH, editor. Chatham House. Available: https://www.chathamhouse.org/sites/default/files/publications/research/2019-10-11-AMR-Full-Paper.pdf. Accessed 11 May 2022
D’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., et al. (2011). Antibiotic resistance is ancient. Nature, 477, 457–461. https://doi.org/10.1038/nature10388
D’Souza, R. M., Becker, N. G., Hall, G., et al. (2004). Does ambient temperature affect foodborne disease? Epidemiology, 15(1), 86–89.
Dadgostar, P. (2019). Antimicrobial resistance: Implications and costs. Infection and Drug Resistance, 12, 3903. https://doi.org/10.2147/IDR.S234610
Dafale, N. A., Srivastava, S., & Purohit, H. J. (2020). Zoonosis: An emerging link to antibiotic resistance under “one health approach”. Indian Journal of Microbiology, 60(2), 139–152. https://doi.org/10.1007/s12088-020-00860-z
ECDC, EFSA, and EMA. (2017). ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA Journal, 15, 4872. https://doi.org/10.2903/j.efsa.2017.4872
EFSA and ECDC. (2018). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA Journal, 16, 5182. https://doi.org/10.2903/j.efsa.2018.5182
Eguale, T., Engidawork, E., Gebreyes, W. A., Asrat, D., Alemayehu, H., & Medhin, G. (2016). Fecal prevalence, serotype distribution and antimicrobial resistance of Salmonellae in dairy cattle in central Ethiopia. BMC Microbiology, 16, 20.
Eguale, T., Birungi, J., Asrat, D., Njahira, M. N., Njuguna, J., & Gebreyes, W. A. (2017). Genetic markers associated with resistance to beta-lactam and quinolone antimicrobials in non-typhoidal Salmonella isolates from humans and animals in central Ethiopia. Antimicrobial Resistance and Infection Control, 6, 13.
Egyir, B., Hadjirin, N. F., Gupta, S., Owusu, F., Agbodzi, B., Adogla-Bessa, T., Addo, K. K., Stegger, M., Larsen, A. R., & Holmes, M. A. (2020). Whole-genome sequence profiling of antibiotic-resistant Staphylococcus aureus isolates from livestock and farm attendants in Ghana. Journal of Global Antimicrobial Resistance, 22, 527–532.
Elhariri, M., Elhelw, R., Selim, S., Ibrahim, M., Hamza, D., & Hamza, E. (2020). Virulence and antibiotic resistance patterns of extended-spectrum beta-lactamase-producing Salmonella enterica serovar Heidelberg isolated from broiler chickens and poultry workers: A potential hazard. Foodborne Pathogens and Disease, 17(6), 373–381.
El-Sharkawy, H., Tahoun, A., El-Gohary, A. E., El-Abasy, M., El-Khayat, F., & Gillespie, T. (2017). Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt. Gut Pathogens, 9, 8.
Gharbi, M., Béjaoui, A., Ben Hamda, C., Jouini, A., Ghedira, K., Zrelli, C., Hamrouni, S., Aouadhi, C., Bessoussa, G., Ghram, A., & Maaroufi, A. (2018). Prevalence and antibiotic resistance patterns of Campylobacter spp. isolated from broiler chickens in the north of Tunisia. BioMed Research International, 2018, 7943786. https://doi.org/10.1155/2018/7943786
Global Antibiotic Resistance Partnership-Kenya Working Group (GARPK). (2011). Situational analysis and recommendations antibiotic use and resistance in Kenya. Center for Disease Dynamics, Economics & Policy.
Gubler, D. J., et al. (2001). Climate variability and change in the United States: Potential impacts on vector- and rodent-borne diseases. Environmental Health Perspectives, 109(2), 223–233.
Güneralp, B., Zhou, Y., Ürge-Vorsatz, D., Gupta, M., Yu, S., Patel, P. L., Fragkias, M., Li, X., & Seto, K. C. (2017). Global scenarios of urban density and its impacts on building energy use through 2050. Proceedings of the National Academy of Sciences of the United States of America, 114(34), 8945–8950.
Hani, E. J., Kaba, E. K., & Simone, S. (2020). Thinking outside the box: Association of antimicrobial resistance with climate warming in Europe – A 30 country observational study. International Journal of Hygiene and Environmental Health, 223(1), 151–158.
Hassan, I. Z., Wandrag, B., Gouws, J. J., Qekwana, D. N., & Naidoo, V. (2021). Antimicrobial resistance and mcr-1 gene in Escherichia coli isolated from poultry samples submitted to a bacteriology laboratory in South Africa. Veterinary World, 14(10), 2662–2669.
Jaja, I. F., Jaja, C. J. I., Chigor, N. M., Anyanwu, M. U., Maduabuchi, E. K., Oguttu, J. W., & Green, E. (2020). Antimicrobial Resistance Phenotype of Staphylococcus aureus and Escherichia coli Isolates Obtained from Meat in the Formal and Informal Sectors in South Africa. BioMed Research International.
Kaier, K., Frank, U., Conrad, A., & Meyer, E. (2010). Seasonal and ascending trends in the incidence of carriage of extended-spectrum ß-lactamase-producing Escherichia coli and Klebsiella species in 2 German hospitals. Infection Control and Hospital Epidemiology, 31(11), 1154–1159.
Kimera, Z. I., Mshana, S. E., Rweyemamu, M. M., Mboera, L. E. G., & Matee, M. I. (2020). Antimicrobial use and resistance in food-producing animals and the environment: An African perspective. Antimicrobial Resistance and Infection Control, 9, 1–12.
Kohli, R., Omuse, G., & Revathi, G. (2010). Antibacterial susceptibility patterns of blood stram isolates in patients investigated at the Aga Khan University Hospital, Nairobi. East African Medical Journal, 87, 74–80. PMID:3057259.
Kumwenda, P., Adukwu, E. C., Tabe, E. S., Ujor, V. C., Kamudumuli, P. S., Ngwira, M., Wu, J., & Chisale, M. (2021). Prevalence, distribution and antimicrobial susceptibility pattern of bacterial isolates from a tertiary Hospital in Malawi. BMC Infectious Diseases, 21(1), 34. https://doi.org/10.1186/s12879-020-05725-w
Lakoh, et al. (2020). Antibiotic resistance in patients with clinical features of healthcare-associated infections in an urban tertiary hospital in Sierra Leone: a cross-sectional study. Antimicrobial Resistance and Infection Control, 9, 38.
Lord, J., Gikonyo, A., Miwa, A., & Odoi, A. (2021). Antimicrobial resistance among Enterobacteriaceae, Staphylococcus aureus, and Pseudomonas spp. isolates from clinical specimens from a hospital in Nairobi, Kenya. PeerJ, 9, e11958. https://doi.org/10.7717/peerj.11958
Luvsansharav, U. O., Wakhungu, J., Grass, J., Oneko, M., Nguyen, V., Bigogo, G., Ogola, E., Audi, A., Onyango, D., Hamel, M. J., Montgomery, J. M., Fields, P. I., & Mahon, B. E. (2020). Exploration of risk factors for ceftriaxone resistance in invasive non-typhoidal Salmonella infections in western Kenya. PLoS One, 15(3), e0229581.
MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M., John, S., & Brownstein, J. S. (2018). Antibiotic resistance increases with local temperature. Nature Climate Change, 8, 510–514.
Maduna, L. D., Kock, M. M., van der Veer, B. M. J. W., Radebe, O., McIntyre, J., van Alphen, L. B., & Peters, R. P. H. (2020). Antimicrobial resistance of Neisseria gonorrhoeae isolates from high-risk men in Johannesburg, South Africa. Antimicrobial Agents and Chemotherapy, 64, e00906–e00920. https://doi.org/10.1128/AAC.00906-20
Maina, D., Revathi, G., Kariuki, S., & Ozwara, H. (2012). Genotypes and cephalosporin susceptibility in extendedspectrum beta-lactamase producing Enterobacteriacea in the community. Journal of Infection in Developing Countries, 6, 470–477. PMID: 22706188.
Manaia, C. M., Rocha, J., Scaccia, N., Marano, R., Radu, E., Biancullo, F., Cerqueira, F., Fortunato, G., Iakovides, I. C., Zammit, I., Kampouris, I., Vaz-Moreira, I., & Nunes, O. C. (2018). Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environment International, 115, 312–324.
McFadden, D. R., McGough, S. F., Fisman, D., Santillana, M., & Brownstein, J. S. (2018). Antibiotic resistance increases with local temperature. Nature Climate Change, 8, 510–514. https://doi.org/10.1038/s41558-018-0161-6. PMID: 30369964.
McGough Sarah, F., MacFadden Derek, R., Hattab Mohammad, W., Kåre, M., & Mauricio, S. (2020). Rates of increase of antibiotic resistance and ambient temperature in Europe: a cross-national analysis of 28 countries between 2000 and 2016. Euro Surveillance, 25(45), 1900414.
Mekuria, L. A., de Wit, T. F., Spieker, N., Koech, R., Nyarango, R., Ndwiga, S., Fenenga, C. J., Ogink, A., Schultsz, C., & Van't Hoog, A. (2019). Analyzing data from the digital healthcare exchange platform for surveillance of antibiotic prescriptions in primary care in urban Kenya: A mixed-methods study. PLoS One, 14(9), e0222651.
Mfoutou Mapanguy, C. C., Adedoja, A., Kecka, L., Vouvoungui, J. C., Nguimbi, E., Velavan, T. P., & Ntoumi, F. (2021). High prevalence of antibiotic-resistant Escherichia coli in Congolese students. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 103, 119–123. https://doi.org/10.1016/j.ijid.2020.09.144
Ministry of Medical Services and Ministry of Public Health and Sanitation. (2010a). Kenya essential medicines list. Government of Kenya with the World Health Organization.
Ministry of Medical Services and Ministry of Public Health and Sanitation. (2010b). Kenya: Service provision assessment survey 2010. Ministry of Medical Services and Ministry of Public Health and Sanitation.
Mitema, E. S., Kikuvi, G. M., Wegener, H. C., & Stohr, K. (2001). An assessment of antimicrobial consumption in food producing animals in Kenya. Journal of Veterinary Pharmacology and Therapeutics, 24, 385–390. PMID: 11903868.
Moore, P. S. (1992). Meningococcal meningitis in sub-Saharan Africa: A model for the epidemic process. Clinical Infectious Diseases, 14(2), 515–525.
Musoke, D., Namata, C., Lubega, G. B., Niyongabo, F., Gonza, J., Chidziwisano, K., Nalinya, S., Nuwematsiko, R., & Morse, T. (2021). The role of Environmental Health in preventing antimicrobial resistance in low-and middle-income countries. Environmental Health and Preventive Medicine, 26, 100. https://doi.org/10.1186/s12199-021-01023-2
Muvunyi, C. M., Masaisa, F., Bayingana, C., Mutesa, L., Musemakweri, A., Muhirwa, G., et al. (2011). Decreased susceptibility to commonly used antimicrobial agents in bacterial pathogens isolated from urinary tract infections in Rwanda: Need for new antimicrobial guidelines. The American Journal of Tropical Medicine and Hygiene, 84, 923–928. https://doi.org/10.4269/ajtmh.2011.11-0057. PMID: 21633029.
Ntirenganya, C., Manzi, O., Muvunyi, C. M., & Ogbuagu, O. (2015). High prevalence of antimicrobial resistance among common bacterial isolates in a tertiary healthcare facility in Rwanda. The American Journal of Tropical Medicine and Hygiene, 92(4), 865–870. https://doi.org/10.4269/ajtmh.14-0607
O’Neill, J. (2016). Infection prevention, control and surveillance: limiting the development and spread of drug resistance: The review on antimicrobial resistance. Available from: https://iiif.wellcomecollection.org/ile/b28552593_Infection%20prevention%20control%20and%20surveillance.pdf. Accessed 22 Apr 2022.
Ombelet, S., Kpossou, G., Kotchare, C., Agbobli, E., & Sogbo, F. (2022). Blood culture surveillance in a secondary care hospital in Benin: epidemiology of bloodstream infection pathogens and antimicrobial resistance. BMC Infectious Diseases, 22, 119. https://doi.org/10.1186/s12879-022-07077-z
Othieno, J. O., Njagi, O., & Azegele, A. (2020). Opportunities and challenges in antimicrobial resistance behavior change communication. One Health, 11, 100171.
Palmeira, J. D., & Ferreira, H. M. N. (2020). Extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae in cattle production – A threat around the world. Heliyon, 6(1), e03206. https://doi.org/10.1016/j.heliyon.e03206
Pascual, M., Rodó, X., Ellner, S. P., Colwell, R., & Bouma, M. J. (2000). Cholera dynamics and El Niño-Southern Oscillation. Science, 289, 1766–1769.
Qekwana, D. N., Phophi, L., Naidoo, V., Oguttu, J. W., & Odoi, A. (2018). Antimicrobial resistance among Escherichia coli isolates from dogs presented with urinary tract infections at a veterinary teaching hospital in South Africa. BMC Veterinary Research, 14, 228.
Quintela-Baluja, M., Chan, C., Alnakip, M. E., Abouelnaga, M., & Graham, D. W. (2015). Sanitation, water quality and antibiotic resistance dissemination. In A. Méndez-Vilas (Ed.), The battle against microbial pathogens: Basic science, technological advances educational programs (pp. 965–975). Newcastle University: Fomatex Research Center.
Ramadan, H., Jackson, C. R., Frye, J. G., Hiott, L. M., Samir, M., Awad, A., & Woodley, T. A. (2020). Antimicrobial resistance, genetic diversity and multilocus sequence typing of escherichia coli from humans, retail chicken and ground beef in Egypt. Pathogens (Basel, Switzerland), 9(5), 357.
Riaz, L., Yang, Q., Sikandar, A., Safeer, R., Anjum, M., Mahmood, T., et al. (2020). Antibiotics use in hospitals and their presence in the associated waste (pp. 27–49). Antibiotics and Antimicrobial Resistance Genes: Springer.
Rogawski, E. T., Platts-Mills, J. A., Seidman, J. C., John, S., Mahfuz, M., Ulak, M., et al. (2017). Use of antibiotics in children younger than two years in eight countries: a prospective cohort study. Bulletin of the World Health Organization, 95, 49–61.
Singer, A. C., Shaw, H., Rhodes, V., & Hart, A. (2016). Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Frontiers in Microbiology, 7(1728). https://doi.org/10.3389/fmicb.2016.01728
Solomon, S., Akeju, O., Odumade, O. A., Ambachew, R., Gebreyohannes, Z., Van Wickle, K., et al. (2021). Prevalence and risk factors for antimicrobial resistance among newborns with gram-negative sepsis. PLoS One, 16(8), e0255410. https://doi.org/10.1371/journal.pone.0255410
The Lancet Infectious Diseases (TLID). (2017). The Lancet infectious diseases. Climate change: The role of the infectious disease community. The Lancet Infectious Diseases, 17(12), 1219.
Tornberg-Belanger, S. N., Rwigi, D., Mugo, M., Kitheka, L., Onamu, N., Ounga, D., et al. (2022). Antimicrobial resistance including Extended Spectrum Beta Lactamases (ESBL) among E. coli isolated from Kenyan children at hospital discharge. PLoS Neglected Tropical Diseases, 16(3), e0010283. https://doi.org/10.1371/journal.pntd.0010283
Vezzulli, L., Grande, C., Reid, P. C., Hélaouët, P., Edwards, M., Höfle, M. G., Brettar, I., Colwell, R. R., & Pruzzo, C. (2016). Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 113(34), E5062–E5071. https://doi.org/10.1073/pnas.1609157113
WHO. (2014). Antimicrobial resistance. Global report on surveillance. Bulletin of the World Health Organization, 61, 383–394. https://doi.org/10.1007/s13312-014-0374-3
WHO. (2019). New report calls for urgent action to avert antimicrobial resistance crisis: World Health Organization. Available from: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis. Accessed 11 May 2022.
Woodward, A., & Macmillan, A. (2015). Environment and climate change. In Oxford textbook of global health (6th ed., pp. 201–215). Oxford University Press.
World Meteorological Organization (WMO). (2020). State of the Climate in Africa 2019. WMO-No. 1253. https://library.wmo.int/doc_num.php?explnum_id=10421. Accessed on 7 Aug 2022.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Asweto, C.O., Onyango, P.O. (2023). Antimicrobial Resistance in a Changing Climatic Context: An Emerging Public Health Threat in Africa. In: Adewoyin, Y. (eds) Health and Medical Geography in Africa. Global Perspectives on Health Geography. Springer, Cham. https://doi.org/10.1007/978-3-031-41268-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-41268-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41267-7
Online ISBN: 978-3-031-41268-4
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)