Skip to main content

Antimicrobial Resistance in a Changing Climatic Context: An Emerging Public Health Threat in Africa

  • Chapter
  • First Online:
Health and Medical Geography in Africa

Abstract

Although there are improvements in human survival as a result of the accessibility of powerful antibiotics, this gain is approaching its limit due to the changing climate and development of resistance to therapeutic agents for the treatment of microbial infections. The fact that a high prevalence of antimicrobial resistance (AMR) significantly decreases the ability to treat infections effectively, increasing complications, hospitalizations, and unnecessary costs to healthcare is even more obvious. African nations are the hardest affected, since they have less access to new antibiotics, are under more financial strain, and are unable to pay for second-line antibiotics. Additionally, the inadequate health systems in the majority of African nations raise the risk of an increase in AMR and its effects. Action is therefore needed at all levels to stem the flow of an oncoming climate catastrophe. Antimicrobial resistance has no negative effects on a microbial fitness, making it crucial to stop it from occurring as a result of climate change. This chapter sought to provide evidence base for our understanding of AMR and climate change by taking a public health-focused approach. Additionally, it shed light on the aspects of climate change on the spread and proliferation of antibiotic resistance in Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agabou, A., Lezzar, N., Ouchenane, Z., Khemissi, S., Satta, D., Sotto, A., Lavigne, J. P., & Pantel, A. (2016). Clonal relationship between human and avian ciprofloxacin-resistant Escherichia coli isolates in North-Eastern Algeria. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology, 35(2), 227–234. https://doi.org/10.1007/s10096-015-2534-3

    Article  Google Scholar 

  • Allcock, S., Young, E., Holmes, M., Gurdasani, D., Dougan, G., Sandhu, M., et al. (2017). Antimicrobial resistance in human populations: challenges and opportunities. Global Health, Epidemiology and Genomics, 2. https://doi.org/10.1017/gheg.2017.4

  • Araya P, Hug J, Joy G, Oschmann F, Rubinstein S. (2016). The impact of water and sanitation on diarrhoeal disease burden and over-consumption of antibiotics. Available from: https://amr-review.org/sites/default/iles/LSE% 20AMR% 20Capstone.pdf. Accessed 17 Mar 2022

  • Ayukekbong, J. A., Ntemgwa, M., & Atabe, A. N. (2019). The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrobial Resistance and Infection Control, 6(1), 1–8. https://doi.org/10.1186/s13756-017-0208-x

    Article  Google Scholar 

  • Babinszky, L., Halas, V., & Verstegen, M. W. A. (2011). Impacts of climate change on animal production and quality of animal food products in climate change – Socioeconomic effects. https://doi.org/10.5772/23840

    Book  Google Scholar 

  • Baker-Austin, C., Trinanes, J., Taylor, N., Harnell, R., Siitonen, A., & Martinez-Urtaza, J. (2013). Emerging Vibrio risk at high latitudes in response to ocean warming. Nature Climate Change, 3, 73–77. https://doi.org/10.1038/nclimate1628

    Article  Google Scholar 

  • Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Science Data, 5, 180214. https://doi.org/10.1038/sdata.2018.214

    Article  Google Scholar 

  • Bradley, D. J. (1993). Human tropical diseases in a changing environment. Ciba Foundation Symposium, 175, 146–162.

    Google Scholar 

  • Chukwu, M. O., Abia, A. L. K., Ubomba-Jaswa, E., Obi, L., & Dewar, J. B. (2019). Characterization and phylogenetic analysis of campylobacter species isolated from paediatric stool and water samples in the northwest province, South Africa. International Journal of Environmental Research and Public Health, 16, 2205. https://doi.org/10.3390/ijerph16122205

    Article  Google Scholar 

  • Clift, C. (2019). Review of progress on antimicrobial resistance: Background and analysis. In Security CoGH, editor. Chatham House. Available: https://www.chathamhouse.org/sites/default/files/publications/research/2019-10-11-AMR-Full-Paper.pdf. Accessed 11 May 2022

    Google Scholar 

  • D’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., et al. (2011). Antibiotic resistance is ancient. Nature, 477, 457–461. https://doi.org/10.1038/nature10388

    Article  Google Scholar 

  • D’Souza, R. M., Becker, N. G., Hall, G., et al. (2004). Does ambient temperature affect foodborne disease? Epidemiology, 15(1), 86–89.

    Article  Google Scholar 

  • Dadgostar, P. (2019). Antimicrobial resistance: Implications and costs. Infection and Drug Resistance, 12, 3903. https://doi.org/10.2147/IDR.S234610

    Article  Google Scholar 

  • Dafale, N. A., Srivastava, S., & Purohit, H. J. (2020). Zoonosis: An emerging link to antibiotic resistance under “one health approach”. Indian Journal of Microbiology, 60(2), 139–152. https://doi.org/10.1007/s12088-020-00860-z

    Article  Google Scholar 

  • ECDC, EFSA, and EMA. (2017). ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA Journal, 15, 4872. https://doi.org/10.2903/j.efsa.2017.4872

    Article  Google Scholar 

  • EFSA and ECDC. (2018). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA Journal, 16, 5182. https://doi.org/10.2903/j.efsa.2018.5182

    Article  Google Scholar 

  • Eguale, T., Engidawork, E., Gebreyes, W. A., Asrat, D., Alemayehu, H., & Medhin, G. (2016). Fecal prevalence, serotype distribution and antimicrobial resistance of Salmonellae in dairy cattle in central Ethiopia. BMC Microbiology, 16, 20.

    Article  Google Scholar 

  • Eguale, T., Birungi, J., Asrat, D., Njahira, M. N., Njuguna, J., & Gebreyes, W. A. (2017). Genetic markers associated with resistance to beta-lactam and quinolone antimicrobials in non-typhoidal Salmonella isolates from humans and animals in central Ethiopia. Antimicrobial Resistance and Infection Control, 6, 13.

    Article  Google Scholar 

  • Egyir, B., Hadjirin, N. F., Gupta, S., Owusu, F., Agbodzi, B., Adogla-Bessa, T., Addo, K. K., Stegger, M., Larsen, A. R., & Holmes, M. A. (2020). Whole-genome sequence profiling of antibiotic-resistant Staphylococcus aureus isolates from livestock and farm attendants in Ghana. Journal of Global Antimicrobial Resistance, 22, 527–532.

    Article  Google Scholar 

  • Elhariri, M., Elhelw, R., Selim, S., Ibrahim, M., Hamza, D., & Hamza, E. (2020). Virulence and antibiotic resistance patterns of extended-spectrum beta-lactamase-producing Salmonella enterica serovar Heidelberg isolated from broiler chickens and poultry workers: A potential hazard. Foodborne Pathogens and Disease, 17(6), 373–381.

    Article  Google Scholar 

  • El-Sharkawy, H., Tahoun, A., El-Gohary, A. E., El-Abasy, M., El-Khayat, F., & Gillespie, T. (2017). Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt. Gut Pathogens, 9, 8.

    Article  Google Scholar 

  • Gharbi, M., Béjaoui, A., Ben Hamda, C., Jouini, A., Ghedira, K., Zrelli, C., Hamrouni, S., Aouadhi, C., Bessoussa, G., Ghram, A., & Maaroufi, A. (2018). Prevalence and antibiotic resistance patterns of Campylobacter spp. isolated from broiler chickens in the north of Tunisia. BioMed Research International, 2018, 7943786. https://doi.org/10.1155/2018/7943786

    Article  Google Scholar 

  • Global Antibiotic Resistance Partnership-Kenya Working Group (GARPK). (2011). Situational analysis and recommendations antibiotic use and resistance in Kenya. Center for Disease Dynamics, Economics & Policy.

    Google Scholar 

  • Gubler, D. J., et al. (2001). Climate variability and change in the United States: Potential impacts on vector- and rodent-borne diseases. Environmental Health Perspectives, 109(2), 223–233.

    Google Scholar 

  • Güneralp, B., Zhou, Y., Ürge-Vorsatz, D., Gupta, M., Yu, S., Patel, P. L., Fragkias, M., Li, X., & Seto, K. C. (2017). Global scenarios of urban density and its impacts on building energy use through 2050. Proceedings of the National Academy of Sciences of the United States of America, 114(34), 8945–8950.

    Article  Google Scholar 

  • Hani, E. J., Kaba, E. K., & Simone, S. (2020). Thinking outside the box: Association of antimicrobial resistance with climate warming in Europe – A 30 country observational study. International Journal of Hygiene and Environmental Health, 223(1), 151–158.

    Article  Google Scholar 

  • Hassan, I. Z., Wandrag, B., Gouws, J. J., Qekwana, D. N., & Naidoo, V. (2021). Antimicrobial resistance and mcr-1 gene in Escherichia coli isolated from poultry samples submitted to a bacteriology laboratory in South Africa. Veterinary World, 14(10), 2662–2669.

    Article  Google Scholar 

  • Jaja, I. F., Jaja, C. J. I., Chigor, N. M., Anyanwu, M. U., Maduabuchi, E. K., Oguttu, J. W., & Green, E. (2020). Antimicrobial Resistance Phenotype of Staphylococcus aureus and Escherichia coli Isolates Obtained from Meat in the Formal and Informal Sectors in South Africa. BioMed Research International.

    Google Scholar 

  • Kaier, K., Frank, U., Conrad, A., & Meyer, E. (2010). Seasonal and ascending trends in the incidence of carriage of extended-spectrum ß-lactamase-producing Escherichia coli and Klebsiella species in 2 German hospitals. Infection Control and Hospital Epidemiology, 31(11), 1154–1159.

    Article  Google Scholar 

  • Kimera, Z. I., Mshana, S. E., Rweyemamu, M. M., Mboera, L. E. G., & Matee, M. I. (2020). Antimicrobial use and resistance in food-producing animals and the environment: An African perspective. Antimicrobial Resistance and Infection Control, 9, 1–12.

    Article  Google Scholar 

  • Kohli, R., Omuse, G., & Revathi, G. (2010). Antibacterial susceptibility patterns of blood stram isolates in patients investigated at the Aga Khan University Hospital, Nairobi. East African Medical Journal, 87, 74–80. PMID:3057259.

    Article  Google Scholar 

  • Kumwenda, P., Adukwu, E. C., Tabe, E. S., Ujor, V. C., Kamudumuli, P. S., Ngwira, M., Wu, J., & Chisale, M. (2021). Prevalence, distribution and antimicrobial susceptibility pattern of bacterial isolates from a tertiary Hospital in Malawi. BMC Infectious Diseases, 21(1), 34. https://doi.org/10.1186/s12879-020-05725-w

    Article  Google Scholar 

  • Lakoh, et al. (2020). Antibiotic resistance in patients with clinical features of healthcare-associated infections in an urban tertiary hospital in Sierra Leone: a cross-sectional study. Antimicrobial Resistance and Infection Control, 9, 38.

    Article  Google Scholar 

  • Lord, J., Gikonyo, A., Miwa, A., & Odoi, A. (2021). Antimicrobial resistance among Enterobacteriaceae, Staphylococcus aureus, and Pseudomonas spp. isolates from clinical specimens from a hospital in Nairobi, Kenya. PeerJ, 9, e11958. https://doi.org/10.7717/peerj.11958

    Article  Google Scholar 

  • Luvsansharav, U. O., Wakhungu, J., Grass, J., Oneko, M., Nguyen, V., Bigogo, G., Ogola, E., Audi, A., Onyango, D., Hamel, M. J., Montgomery, J. M., Fields, P. I., & Mahon, B. E. (2020). Exploration of risk factors for ceftriaxone resistance in invasive non-typhoidal Salmonella infections in western Kenya. PLoS One, 15(3), e0229581.

    Article  Google Scholar 

  • MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M., John, S., & Brownstein, J. S. (2018). Antibiotic resistance increases with local temperature. Nature Climate Change, 8, 510–514.

    Article  Google Scholar 

  • Maduna, L. D., Kock, M. M., van der Veer, B. M. J. W., Radebe, O., McIntyre, J., van Alphen, L. B., & Peters, R. P. H. (2020). Antimicrobial resistance of Neisseria gonorrhoeae isolates from high-risk men in Johannesburg, South Africa. Antimicrobial Agents and Chemotherapy, 64, e00906–e00920. https://doi.org/10.1128/AAC.00906-20

    Article  Google Scholar 

  • Maina, D., Revathi, G., Kariuki, S., & Ozwara, H. (2012). Genotypes and cephalosporin susceptibility in extendedspectrum beta-lactamase producing Enterobacteriacea in the community. Journal of Infection in Developing Countries, 6, 470–477. PMID: 22706188.

    Article  Google Scholar 

  • Manaia, C. M., Rocha, J., Scaccia, N., Marano, R., Radu, E., Biancullo, F., Cerqueira, F., Fortunato, G., Iakovides, I. C., Zammit, I., Kampouris, I., Vaz-Moreira, I., & Nunes, O. C. (2018). Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environment International, 115, 312–324.

    Article  Google Scholar 

  • McFadden, D. R., McGough, S. F., Fisman, D., Santillana, M., & Brownstein, J. S. (2018). Antibiotic resistance increases with local temperature. Nature Climate Change, 8, 510–514. https://doi.org/10.1038/s41558-018-0161-6. PMID: 30369964.

    Article  Google Scholar 

  • McGough Sarah, F., MacFadden Derek, R., Hattab Mohammad, W., Kåre, M., & Mauricio, S. (2020). Rates of increase of antibiotic resistance and ambient temperature in Europe: a cross-national analysis of 28 countries between 2000 and 2016. Euro Surveillance, 25(45), 1900414.

    Google Scholar 

  • Mekuria, L. A., de Wit, T. F., Spieker, N., Koech, R., Nyarango, R., Ndwiga, S., Fenenga, C. J., Ogink, A., Schultsz, C., & Van't Hoog, A. (2019). Analyzing data from the digital healthcare exchange platform for surveillance of antibiotic prescriptions in primary care in urban Kenya: A mixed-methods study. PLoS One, 14(9), e0222651.

    Article  Google Scholar 

  • Mfoutou Mapanguy, C. C., Adedoja, A., Kecka, L., Vouvoungui, J. C., Nguimbi, E., Velavan, T. P., & Ntoumi, F. (2021). High prevalence of antibiotic-resistant Escherichia coli in Congolese students. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 103, 119–123. https://doi.org/10.1016/j.ijid.2020.09.144

    Article  Google Scholar 

  • Ministry of Medical Services and Ministry of Public Health and Sanitation. (2010a). Kenya essential medicines list. Government of Kenya with the World Health Organization.

    Google Scholar 

  • Ministry of Medical Services and Ministry of Public Health and Sanitation. (2010b). Kenya: Service provision assessment survey 2010. Ministry of Medical Services and Ministry of Public Health and Sanitation.

    Google Scholar 

  • Mitema, E. S., Kikuvi, G. M., Wegener, H. C., & Stohr, K. (2001). An assessment of antimicrobial consumption in food producing animals in Kenya. Journal of Veterinary Pharmacology and Therapeutics, 24, 385–390. PMID: 11903868.

    Article  Google Scholar 

  • Moore, P. S. (1992). Meningococcal meningitis in sub-Saharan Africa: A model for the epidemic process. Clinical Infectious Diseases, 14(2), 515–525.

    Article  Google Scholar 

  • Musoke, D., Namata, C., Lubega, G. B., Niyongabo, F., Gonza, J., Chidziwisano, K., Nalinya, S., Nuwematsiko, R., & Morse, T. (2021). The role of Environmental Health in preventing antimicrobial resistance in low-and middle-income countries. Environmental Health and Preventive Medicine, 26, 100. https://doi.org/10.1186/s12199-021-01023-2

    Article  Google Scholar 

  • Muvunyi, C. M., Masaisa, F., Bayingana, C., Mutesa, L., Musemakweri, A., Muhirwa, G., et al. (2011). Decreased susceptibility to commonly used antimicrobial agents in bacterial pathogens isolated from urinary tract infections in Rwanda: Need for new antimicrobial guidelines. The American Journal of Tropical Medicine and Hygiene, 84, 923–928. https://doi.org/10.4269/ajtmh.2011.11-0057. PMID: 21633029.

    Article  Google Scholar 

  • Ntirenganya, C., Manzi, O., Muvunyi, C. M., & Ogbuagu, O. (2015). High prevalence of antimicrobial resistance among common bacterial isolates in a tertiary healthcare facility in Rwanda. The American Journal of Tropical Medicine and Hygiene, 92(4), 865–870. https://doi.org/10.4269/ajtmh.14-0607

    Article  Google Scholar 

  • O’Neill, J. (2016). Infection prevention, control and surveillance: limiting the development and spread of drug resistance: The review on antimicrobial resistance. Available from: https://iiif.wellcomecollection.org/ile/b28552593_Infection%20prevention%20control%20and%20surveillance.pdf. Accessed 22 Apr 2022.

  • Ombelet, S., Kpossou, G., Kotchare, C., Agbobli, E., & Sogbo, F. (2022). Blood culture surveillance in a secondary care hospital in Benin: epidemiology of bloodstream infection pathogens and antimicrobial resistance. BMC Infectious Diseases, 22, 119. https://doi.org/10.1186/s12879-022-07077-z

    Article  Google Scholar 

  • Othieno, J. O., Njagi, O., & Azegele, A. (2020). Opportunities and challenges in antimicrobial resistance behavior change communication. One Health, 11, 100171.

    Article  Google Scholar 

  • Palmeira, J. D., & Ferreira, H. M. N. (2020). Extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae in cattle production – A threat around the world. Heliyon, 6(1), e03206. https://doi.org/10.1016/j.heliyon.e03206

    Article  Google Scholar 

  • Pascual, M., Rodó, X., Ellner, S. P., Colwell, R., & Bouma, M. J. (2000). Cholera dynamics and El Niño-Southern Oscillation. Science, 289, 1766–1769.

    Article  Google Scholar 

  • Qekwana, D. N., Phophi, L., Naidoo, V., Oguttu, J. W., & Odoi, A. (2018). Antimicrobial resistance among Escherichia coli isolates from dogs presented with urinary tract infections at a veterinary teaching hospital in South Africa. BMC Veterinary Research, 14, 228.

    Article  Google Scholar 

  • Quintela-Baluja, M., Chan, C., Alnakip, M. E., Abouelnaga, M., & Graham, D. W. (2015). Sanitation, water quality and antibiotic resistance dissemination. In A. Méndez-Vilas (Ed.), The battle against microbial pathogens: Basic science, technological advances educational programs (pp. 965–975). Newcastle University: Fomatex Research Center.

    Google Scholar 

  • Ramadan, H., Jackson, C. R., Frye, J. G., Hiott, L. M., Samir, M., Awad, A., & Woodley, T. A. (2020). Antimicrobial resistance, genetic diversity and multilocus sequence typing of escherichia coli from humans, retail chicken and ground beef in Egypt. Pathogens (Basel, Switzerland), 9(5), 357.

    Google Scholar 

  • Riaz, L., Yang, Q., Sikandar, A., Safeer, R., Anjum, M., Mahmood, T., et al. (2020). Antibiotics use in hospitals and their presence in the associated waste (pp. 27–49). Antibiotics and Antimicrobial Resistance Genes: Springer.

    Google Scholar 

  • Rogawski, E. T., Platts-Mills, J. A., Seidman, J. C., John, S., Mahfuz, M., Ulak, M., et al. (2017). Use of antibiotics in children younger than two years in eight countries: a prospective cohort study. Bulletin of the World Health Organization, 95, 49–61.

    Article  Google Scholar 

  • Singer, A. C., Shaw, H., Rhodes, V., & Hart, A. (2016). Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Frontiers in Microbiology, 7(1728). https://doi.org/10.3389/fmicb.2016.01728

  • Solomon, S., Akeju, O., Odumade, O. A., Ambachew, R., Gebreyohannes, Z., Van Wickle, K., et al. (2021). Prevalence and risk factors for antimicrobial resistance among newborns with gram-negative sepsis. PLoS One, 16(8), e0255410. https://doi.org/10.1371/journal.pone.0255410

    Article  Google Scholar 

  • The Lancet Infectious Diseases (TLID). (2017). The Lancet infectious diseases. Climate change: The role of the infectious disease community. The Lancet Infectious Diseases, 17(12), 1219.

    Article  Google Scholar 

  • Tornberg-Belanger, S. N., Rwigi, D., Mugo, M., Kitheka, L., Onamu, N., Ounga, D., et al. (2022). Antimicrobial resistance including Extended Spectrum Beta Lactamases (ESBL) among E. coli isolated from Kenyan children at hospital discharge. PLoS Neglected Tropical Diseases, 16(3), e0010283. https://doi.org/10.1371/journal.pntd.0010283

    Article  Google Scholar 

  • Vezzulli, L., Grande, C., Reid, P. C., Hélaouët, P., Edwards, M., Höfle, M. G., Brettar, I., Colwell, R. R., & Pruzzo, C. (2016). Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 113(34), E5062–E5071. https://doi.org/10.1073/pnas.1609157113

    Article  Google Scholar 

  • WHO. (2014). Antimicrobial resistance. Global report on surveillance. Bulletin of the World Health Organization, 61, 383–394. https://doi.org/10.1007/s13312-014-0374-3

    Article  Google Scholar 

  • WHO. (2019). New report calls for urgent action to avert antimicrobial resistance crisis: World Health Organization. Available from: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis. Accessed 11 May 2022.

  • Woodward, A., & Macmillan, A. (2015). Environment and climate change. In Oxford textbook of global health (6th ed., pp. 201–215). Oxford University Press.

    Chapter  Google Scholar 

  • World Meteorological Organization (WMO). (2020). State of the Climate in Africa 2019. WMO-No. 1253. https://library.wmo.int/doc_num.php?explnum_id=10421. Accessed on 7 Aug 2022.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Collins Otieno Asweto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asweto, C.O., Onyango, P.O. (2023). Antimicrobial Resistance in a Changing Climatic Context: An Emerging Public Health Threat in Africa. In: Adewoyin, Y. (eds) Health and Medical Geography in Africa. Global Perspectives on Health Geography. Springer, Cham. https://doi.org/10.1007/978-3-031-41268-4_10

Download citation

Publish with us

Policies and ethics