Abstract
The reason why stable atherosclerotic plaques rupture or erode leading to atherothrombosis remains a conundrum. While occasionally myocardial infarction follows an “acute external triggering event,” most appear to occur at random.
The concept of a “vulnerable plaque primed to rupture” was based on post-mortem studies that found atherothrombosis was frequently associated with ruptured plaques that had a thin fibrous cap, a large lipid core, and inflammatory infiltration in its shoulder regions. However, these morphologic descriptors do not explain the processes that occurred within the plaque prior to rupture, and do not explain why in up to one third of cases atherothrombosis is associated with plaque erosion in the absence of inflammation.
Although non-invasive imaging has been able to identify that plaques with a large lipid rich core associated with inflammation are at somewhat higher risk of future injury, most such plaques remain stable.
Together these observations indicate that the vulnerability of plaques is dynamic and raises the possibly that instability relates to ongoing changes in the physiochemistry of the lipid core that at times favors the formation of cholesterol crystals that can “change the destiny of a plaque” by causing traumatic injury and changing the trajectory of the inflammatory milieu in the plaque bed so that it begins to favor persistent inflammatory injury rather than healing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Marchant B, Ranjadayalan K, Stevenson R, Wilkinson P, Timmis AD. Circadian and seasonal factors in the pathogenesis of acute myocardial infarction: the influence of environmental temperature. Br Heart J. 1993;69(5):385–7. https://doi.org/10.1136/hrt.69.5.385.
Xin M, Zhang S, Zhao L, Jin X, Kim W, Cheng XW. Circadian and seasonal variation in onset of acute myocardial infarction. Medicine (Baltimore). 2022;101(28):e29839. https://doi.org/10.1097/MD.0000000000029839.
Mehta D, Curwin J, Gomes A, Fuster V. Sudden death in coronary artery disease: acute ischemia versus myocardial substrate. Circulation. 1997;96:3215–23. https://doi.org/10.1161/01.cir.96.9.3215.
Ruffer MA. On arterial lesions found in Egyptian mummies (1580 BC-525 AD). J Pathol Bacteriol. 1911;15:453–62.
Gotto AM. Some reflections on arteriosclerosis: past, present, and future. Circulation. 1985;72:8–17. https://doi.org/10.1161/01.CIR.72.1.8.
Capron L. Évolution des théories sur Íathérosclérosis. Rev Prat. 1996;46:533–7.
Virchow R. Cellular pathology as based upon physiological and pathlogical histoly (translated by Frank Chance from 2nd German Edition). London: John Churchill; 1860. p. 360.
Abela GS. Atherosclerosis as an inflammatory arterial disease “Déjà vu”? ACC Curr J Rev. 2003;12:23–5. https://doi.org/10.1016/S1062-1458(03)00337-4.
Rokitansky C. A manual of pathological anatomy (translated by William Swaine from German), vol. 1. London: Sydenham Society; 1854. p. 97.
Anitschkow NN, Chalatow S. Ueber experimentelle Cholesterinsteatose und ihre Bedeutung fur die Entstehung eini-ger pathologischer Prozesse. Zentralbl Allg Pathol. 1913;24:1–9.
Shull KH, Mann GV, Andrus SB, Stare FJ. Response of dogs to cholesterol feeding. Am J Physiol. 1954;176:475–82. https://doi.org/10.1152/ajplegacy.1954.176.3.475.
Roberts WC. We think we are one, we act as if we are one, but we are not one. Am J Cardiol. 1990;66:896.
Muller JE, Abela GS, Nesto RW, Tofler GH. Triggers, acute risk factors and vulnerable plaques: the lexicon of a new frontier. J Am Coll Cardiol. 1994;23:809–13. https://doi.org/10.1016/0735-1097(94)90772-2.
Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35. https://doi.org/10.1056/NEJMoa1002358.
Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation. 2003;108:1664–72. https://doi.org/10.1161/01.CIR.0000087480.94275.97.
Arbab-Zadeh A, Fuster V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol. 2015;65:846–55. https://doi.org/10.1016/j.jacc.2014.11.041.
Castelli WP, Anderson K, Wilson PWF, Levy D. Lipids and risk of coronary heart disease. The Framingham Study. Ann Epidemiol. 1992;2:23–8. https://doi.org/10.1016/1047-2797(92)90033-m.
Muller JE, Stone PH, Turi ZG, et al. Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med. 1985;313:11315–22. https://doi.org/10.1056/NEJM198511213132103.
Mittleman MA, Maclure M, Tofler GH, Sherwood JB, Goldberg RJ, Muller JE. Triggering of acute myocardial infarction by heavy physical exertion. Protection against triggering by regular exertion. Determinants of myocardial infarction onset study investigators. N Engl J Med. 1993;329:1677–83. https://doi.org/10.1056/NEJM199312023292301.
Mittleman MA, Maclure M, Sherwood JB, Mulry RP, Tofler GH, Jacobs SC, Friedman R, Benson H, Muller JE. Circulation. 1985;92:1720–5. https://doi.org/10.1161/01.cir.92.7.1720.
Muller JE, Mittleman MA, Maclure M, Sherwood JB, Tofler GH. Triggering myocardial infarction by sexual activity. Low absolute risk and prevention by regular physical exertion. Determinants of myocardial infarction onset study investigators. JAMA. 1996;275:1405–9. https://doi.org/10.1001/jama.275.18.1405.
Chen GC, Loree HM, Kamm RD, Fishbein MC, Lee RT. Distribution of circumferential stress in rutptured and stable atherosclerotic lesions. A structural analysis with histopatholgical correlation. Circulation. 1993;87:1179–87. https://doi.org/10.1161/01.cir.87.4.1179.
Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, et al. Centers for Disease Control and Prevention; American Heart Association. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107:499–511. https://doi.org/10.1161/01.CIR.0000052939.59093.45.
Libby P, Nahrendorf M, Swirski FK. Leukocytes link local and systemic inflammation in ischemic cardiovascular disease: an expanded “cardiovascular continuum”. J Am Coll Cardiol. 2017;67:1091–103. https://doi.org/10.1016/j.jacc.2015.12.048.
Mason JC, Libby P. Cardiovascular disease in patients with chronic inflammation: mechanisms underlying premature cardiovascular events in rheumatologic conditions. Eur Heart J. 2015;36:482–9. https://doi.org/10.1093/eurheartj/ehu403.
Moreno PR. Vulnerable plaque: definition, diagnosis, and treatment. Cardiol Clin. 2010;28:1–30. https://doi.org/10.1016/j.ccl.2009.09.008.
Davies MJ. The pathophysiology of acute coronary syndromes. Heart. 2000;83:361–6. https://doi.org/10.1136/heart.83.3.361.
Steffel J, Luscher TF, Tanner F. Tissue factor in cardiovascular diseases. Circulation. 2006;113:722–31. https://doi.org/10.1161/CIRCULATIONAHA.105.567297.
Fayad ZA, Fuster V. Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res. 2001;89:305–16. https://doi.org/10.1161/hh1601.095596.
de Feyter PJ, Nieman K. New coronary imaging techniques: what to expect? Heart. 2002;87:195–7. https://doi.org/10.1136/heart.87.3.195.
Sosnovsk DE, Muiler JE, Kathiresan S, Brady TJ. Non-invasive imaging of plaque vulnerability: an important tool for the assessment of agents to stabilise atherosclerotic plaques. Expert Opin Investig Drugs. 2002;11:693–704. https://doi.org/10.1517/13543784.11.5.693.
Arampatzis CA, Ligthart JM, Schaar JA, Nieman K, Serruys PW, de Feyter PJ. Images in cardiovascular medicine. Detection of a vulnerable coronary plaque: a treatment dilemma. Circulation. 2003;108:e34–5. https://doi.org/10.1161/01.CIR.0000075303.04340.EF.
MacNeill BD, Lowe HC, Takano M, Fuster V, Jang IK. Intravascular modalities for detection of vulnerable plaque: current status. Arterioscler Thromb Vasc Biol. 2003;23:1333–42. https://doi.org/10.1161/01.ATV.0000080948.08888.BF.
Terada K, Kubo T, Kameyama T, et al. NIRS-IVUS for differentiating coronary plaque rupture, erosion, and calcified nodule in acute myocardial infarction. J Am Coll Cardiol Cardiovasc Imag. 2021;14:1440–50. https://doi.org/10.1016/j.jcmg.2020.08.030.
Madder RD, Puri R, Muller JE, et al. Confirmation of the intracoronary near-infrared spectroscopy threshold of lipid-rich plaques that underlie ST-segment-elevation myocardial infarction. Athero Thromb Vasc Biol. 2016;36:1010–5. https://doi.org/10.1161/ATVBAHA.115.306849.
Karlsson S, Anesäter E, Fransson K, Andell P, Persson J, Erlinge D. Intracoronary near-infrared spectroscopy and the risk of future cardiovascular events. Open Heart. 2019;6:e000917. https://doi.org/10.1136/openhrt-2018-000917.
Abela GS, Aziz K. Cholesterol crystals rupture biological membranes and human plaques during acute cardiovascular events—a novel insight into plaque rupture by scanning electron microscopy. Scanning. 2006;28:1–10. https://doi.org/10.1002/sca.4950280101.
Al-Handawi MB, Commins P, Prasad Karothu D, Raj G, Li L, Naumov P. Mechanical and crystallographic analysis of cholesterol crystals puncturing biological membranes. Chem A Eur J. 2018;24:11493–7. https://doi.org/10.1002/chem.201802251.
Vedre A, Pathak DR, Crimp M, Lum C, Koochesfahani M, Abela GS. Physical factors that trigger cholesterol crystallization leading to plaque rupture. Atherosclerosis. 2008;203:89–96. https://doi.org/10.1016/j.atherosclerosis.2008.06.027.
Janoudi A, Shamoun FE, Kalavakunta JK, Abela GS. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J. 2016;37:1959–67. https://doi.org/10.1093/eurheartj/ehv653.
Nidorf SM, Fiolet A, Abela GS. Viewing atherosclerosis through a crystal lens: how the evolving sturture of cholesterol crystals in atheroscleritc plaque alters its stability. J Clin Lipidol. 2020;14:619–30. https://doi.org/10.1016/j.jacl.2020.07.003.
Düewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind F, Abela GS, Franchi L, Nunez G, Schnurr M, Espevik T, Lien G, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61. https://doi.org/10.1038/nature08938.
Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62:1748–58. https://doi.org/10.1016/j.jacc.2013.05.071.
Yamamoto E, Yonetsu T, Kakuta T, Soeda T, Saito Y, Yan BP, et al. Clinical and laboratory predictors for plaque erosion in patients with acute coronary syndromes. J Am Heart Assoc. 2019;8:e012322. https://doi.org/10.1161/JAHA.119.012322.
Grégory F. Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion. Atherosclerosis. 2021;318:60–9. https://doi.org/10.1016/j.atherosclerosis.2020.11.002.
Fang C, Lu J, Zhang S, Wang J, Wang Y, Li L, et al. Morphological characteristics of eroded plaques with noncritical coronary stenosis: an optical coherence tomography study. J Atheroscler Thromb. 2021;29:126. https://doi.org/10.5551/jat.60301.
Sato Y, Hatakeyama K, Yamashita A, Marutsuka K, Sumiyoshi A, Asada Y. Proportion of fibrin and platelets differs in thrombi on ruptured and eroded coronary atherosclerotic plaques in humans. Heart. 2005;91:526–30. https://doi.org/10.1136/hrt.2004.034058.
Abela GS. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J Clin Lipidol. 2010;4:156–64. https://doi.org/10.1016/j.jacl.2010.03.003.
Mughal MM, Khan MK, DeMarco JK, Majid A, Shamoun F, Abela GS. Symptomatic and asymptomatic carotid artery plaque. Expert Rev Cardiovasc Ther. 2011;2011(9):1315–30. https://doi.org/10.1586/erc.11.120.
Singh P, Kumar N, Singh M, Kaur M, Singh G, Narang A, Kanwal A, Sharma K, Singh B, Napoli MD, Mastana S. Neutrophil extracellular traps and NLRP3 Inflammasome: a disturbing duo in atherosclerosis, inflammation and atherothrombosis. Vaccine. 2023;11(2):261. PMID: 36851139; PMCID: PMC9966193. https://doi.org/10.3390/vaccines11020261.
Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, Karamanos NK. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J. 2019;286:2883–908. https://doi.org/10.1111/febs.14777.
Wilkinson TS, Bressler SL, Evanko SP, Braun KR, Wight TN. Overexpression of hyaluronan synthases alters vascular smooth muscle cell phenotype and promotes monocyte adhesion. J Cell Physiol. 2006;206:378–85. https://doi.org/10.1002/jcp.20468.
Yamamoto E, Thondapu V, Poon E, Sugiyama T, Fracassi F, Dijkstra J, et al. Endothelial shear stress and plaque erosion: a computational fluid dynamics and optical coherence tomography study. JACC Cardiovasc Imag. 2019;12:374–5. https://doi.org/10.1016/j.jcmg.2018.07.024.
McElroy M, Kim Y, Niccoli G, Vergallo R, Langford-Smith A, Crea F, et al. Identification of the haemodynamic environment permissive for plaque erosion. Sci Rep. 2021;11:7253. https://doi.org/10.1038/s41598-021-86501-x.
Vergallo R, Papafaklis MI, D'Amario D, Michalis LK, Crea F, Porto I. Coronary plaque erosion developing in an area of high endothelial shear stress: insights from serial optical coherence tomography imaging. Coron Artery Dis. 2019;30:74–5. https://doi.org/10.1097/MCA.0000000000000673.
Vergallo R, Crea F. Atherosclerotic plaque healing. N Engl J Med. 2020;383(9):846–57. https://doi.org/10.1056/NEJMra2000317.
Virmani R, Burke A, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8_Supplement):C13–8. https://doi.org/10.1016/j.jacc.2005.10.065.
Komatsu S, Yutani C, Takahashi S, Takewa M, Ohara T, Hirayama A, Kodama K. Debris collected in-situ from spontaneously ruptured atherosclerotic plaque invariably contains large cholesterol crystals and evidence of activation of innate inflammation: insights from non-obstructive general angioscopy. Atherosclerosis. 2022;352:96–102. https://doi.org/10.1016/j.atherosclerosis.2022.03.010.
McCubrey RO, Mason SM, Le VT, Bride DL, Horne BD, Meredith KG, Sekaran NK, Anderson JL, Knowlton KU, Min DB, Knight S. A highly predictive cardiac positron emission tomography (PET) risk score for 90-day and one-year major adverse cardiac events and revascularization. J Nucl Cardiol. 2023;30(1):46–58. https://doi.org/10.1007/s12350-022-03028-y.
Aziz K, Berger K, Claycombe K, Huang R, Patel R, Abela GS. Noninvasive detection and localization of vulnerable plaque and arterial thrombosis with computed tomography angiography/positron emission tomography. Circulation. 2008;117:2061–70. https://doi.org/10.1161/CIRCULATIONAHA.106.652313.
Tarkin JM, Joshi FR, Evans NR, et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J Am Coll Cardiol. 2017;11:1774–91. https://doi.org/10.1016/j.jacc.2017.01.060.
Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, JJP K, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, PRF R, RPT T, Libby P, Glynn RJ, CANTOS Trial Group. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. https://doi.org/10.1056/NEJMoa1707914.
Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, The SHK, Xu XF, Ireland MA, Lenderink T, Latchem D, Hoogslag P, Jerzewski A, Nierop P, Whelan A, Hendriks R, Swart H, Schaap J, Kuijper AFM, van Hessen MWJ, Saklani P, Tan I, Thompson AG, Morton A, Judkins C, Bax WA, Dirksen M, Alings M, Hankey GJ, Budgeon CA, Tijssen JGP, Cornel JH, Thompson PL. LoDoCo2 trial investigators. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383(19):1838–47. https://doi.org/10.1056/NEJMoa2021372.
Maiellaro K, Taylor WR. The role of the adventitia in vascular inflammation. Cardiovasc Res. 2007;75(4):640–8. https://doi.org/10.1016/j.cardiores.2007.06.023.
Kruth HS. Localization of unesterified cholesterol in human atherosclerotic lesions. Demonstration of filipin-positive, oil-red-O-negative particles. Am J Pathol. 1984;114(2):201–8. PMID: 6198918; PMCID: PMC1900338.
Small DM, Bond MG, Waugh D, Prack M, Sawyer JK. Physicochemical and histological changes in the arterial wall of nonhuman primates during progression and regression of atherosclerosis. J Clin Invest. 1984;73:1590–605. https://doi.org/10.1172/JCI111366.
Stefanadis C, Antoniou C-K, Tsiachris D, Pietri P. Coronary atherosclerotic vulnerable plaque: current perspectives. J Am Heart Assoc. 2017;6:e005543. https://doi.org/10.1161/JAHA.117.005543.
Luo X, Lv Y, Bai X, Qi J, Weng X, Liu S, Bao X, Jia H, Yu B. Plaque erosion: a distinctive pathological mechanism of acute coronary syndrome. Front Cardiovasc Med. 2021;8:711453. https://doi.org/10.3389/fcvm.2021.711453.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Nidorf, S.M., Madder, R., Elshafie, A., Abela, G.S. (2023). Atherosclerotic Plaque Morphology and the Conundrum of the Vulnerable Plaque. In: Abela, G.S., Nidorf, S.M. (eds) Cholesterol Crystals in Atherosclerosis and Other Related Diseases. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-41192-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-41192-2_9
Published:
Publisher Name: Humana, Cham
Print ISBN: 978-3-031-41191-5
Online ISBN: 978-3-031-41192-2
eBook Packages: MedicineMedicine (R0)