Skip to main content

Detecting Cholesterol Crystals Clinically in Spontaneous Aortic Plaque Rupture

  • Chapter
  • First Online:
Cholesterol Crystals in Atherosclerosis and Other Related Diseases

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 131 Accesses

Abstract

Non-obstructive general angioscopy (NOGA) is an advanced imaging device used to demonstrate plaques, thrombi, and injuries in all types of vessels in live patients. The precise findings of NOGA are attributed to the superior and incomparable optical resolution compared to that of computed tomography (CT) angiography or ultrasonography. Recently, the spontaneously ruptured aortic plaques (SRAPs) has been detected using NOGA. Although smaller aortic plaques were considered innocent and trivial, there was an 80.9% incidence of SRAP in patients with diagnosed or suspected coronary artery disease. A puff-chandelier rupture, a type of SRAP, contains atheromatous materials such as cholesterol crystals, fibrin, calcification, and macrophages. Furthermore, SRAPs may be mobilized to systemic organs via aortic flow, with cholesterol crystals possibly inducing mechanical obstruction and the NLRP3 inflammasome. With the accumulation of asymptomatic injuries due to silent embolisms, which may be related to aging and chronic inflammation, the need for accurate and precise diagnostics should be considered crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spears JR, Marais HJ, Serur J, et al. In vivo coronary angioscopy. J Am Coll Cardiol. 1983;1:1311–4. https://doi.org/10.1016/s0735-1097(83)80145-4.

    Article  CAS  PubMed  Google Scholar 

  2. Nanto S, Ohara T, Mishima M, et al. Coronary angioscopy: a monorail angioscope with movable guide wire. Am J Card Imaging. 1991;5:1–5.

    CAS  PubMed  Google Scholar 

  3. Komatsu S, Ohara T, Takahashi S, et al. Improving the visual field in coronary artery by with non-obstructive angioscopy: dual infusion method. Int J Cardiovasc Imaging. 2017;33:789–96. https://doi.org/10.1007/s10554-017-1079-1.

    Article  PubMed  Google Scholar 

  4. Ueda Y, Hirayama A, Kodama K. Plaque characterization and atherosclerosis evaluation by coronary angioscopy. Herz. 2003;28:501–4. https://doi.org/10.1007/s00059-003-2486-8.

    Article  PubMed  Google Scholar 

  5. Ueda Y, Ohtani T, Shimizu M, et al. Assessment of plaque vulnerability by angioscopic classification of plaque color. Am Heart J. 2004;148:333–5. https://doi.org/10.1016/j.ahj.2004.03.047.

    Article  PubMed  Google Scholar 

  6. Asakura M, Ueda Y, Yamaguchi O, et al. Extensive development of vulnerable plaques as a pan-coronary process in patients with myocardial infarction: an angioscopic study. J Am Coll Cardiol. 2001;37:1284–8. https://doi.org/10.1016/s0735-1097(01)01135-4.

    Article  CAS  PubMed  Google Scholar 

  7. Ohtani T, Ueda Y, Mizote I, et al. Number of yellow plaques detected in a coronary artery is associated with future risk of acute coronary syndrome: detection of vulnerable patients by angioscopy. J Am Coll Cardiol. 2006;47:2194–200. https://doi.org/10.1016/j.jacc.2006.01.064.

    Article  PubMed  Google Scholar 

  8. Ueda Y, Asakura M, Yamaguchi O, et al. The healing process of infarct-related plaques. Insights from 18 months of serial angioscopic follow-up. J Am Coll Cardiol. 2001;38:1916–22. https://doi.org/10.1016/s0735-1097(01)01673-4.

    Article  CAS  PubMed  Google Scholar 

  9. Hirayama A, Saito S, Ueda Y, et al. Qualitative and quantitative changes in coronary plaque associated with atorvastatin therapy. Circ J. 2009;73:718–25. https://doi.org/10.1253/circj.cj-08-0755.

    Article  CAS  PubMed  Google Scholar 

  10. Kodama K, Komatsu S, Ueda Y, et al. Stabilization and regression of coronary plaques treated with pitavastatin proven by angioscopy and intravascular ultrasound—the TOGETHAR trial. Circ J. 2010;74:1922–8. https://doi.org/10.1253/circj.cj-10-0038.

    Article  CAS  PubMed  Google Scholar 

  11. Okada K, Ueda Y, Matsuo K, et al. Frequency and healing of nonculprit coronary artery plaque disruptions in patients with acute myocardial infarction. Am J Cardiol. 2011;107:1426–9. https://doi.org/10.1016/j.amjcard.2011.01.016.

    Article  PubMed  Google Scholar 

  12. Ueda Y, Nanto S, Komamura K, et al. Neointimal coverage of stents in human coronary arteries observed by angioscopy. J Am Coll Cardiol. 1994;23:341–6. https://doi.org/10.1016/0735-1097(94)90417-0.

    Article  CAS  PubMed  Google Scholar 

  13. Ueda Y, Matsuo K, Nishimoto Y, et al. In-stent yellow plaque at 1 year after implantation is associated with future event of very late stent failure: the DESNOTE study (detect the event of very late stent failure from the drug-eluting stent not well covered by Neointima determined by Angioscopy). JACC Cardiovasc Interv. 2015;8:814–21. https://doi.org/10.1016/j.jcin.2014.12.239.

    Article  PubMed  Google Scholar 

  14. Komatsu S, Ohara T, Takahashi S, et al. Extraordinary subintimal bleeding after coronary stenting. JACC Cardiovasc Interv. 2016;9:e207–9. https://doi.org/10.1016/j.jcin.2016.07.043.

    Article  PubMed  Google Scholar 

  15. Komatsu S, Ohara T, Takahashi S, et al. Early detection of vulnerable atherosclerotic plaque for risk reduction of acute aortic rupture and thromboemboli and atheroemboli using non-obstructive angioscopy. Circ J. 2015;79:742–50. https://doi.org/10.1253/circj.CJ-15-0126.

    Article  PubMed  Google Scholar 

  16. Komatsu S, Yutani C, Ohara T, et al. Angioscopic evaluation of spontaneously ruptured aortic plaques. J Am Coll Cardiol. 2018;71:2893–902. https://doi.org/10.1016/j.jacc.2018.03.539.

    Article  PubMed  Google Scholar 

  17. Komatsu S, Takahashi S, Yutani C, et al. Spontaneous ruptured aortic plaque and injuries: insights for aging and acute aortic syndrome from non-obstructive general angioscopy. J Cardiol. 2020;75:344–51. https://doi.org/10.1016/j.jjcc.2019.12.004.

    Article  PubMed  Google Scholar 

  18. Komatsu S, Ohara T, Takewa M, et al. Nonobstructive angioscopy in patient with atherosclerotic renal artery stenosis. J Cardiol Cases. 2013;9:18–21. https://doi.org/10.1016/j.jccase.2013.08.014.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nakanishi N, Nakamura T, Yamano T, et al. Angioscopic observation in chronic thromboembolic pulmonary hypertension before and after balloon pulmonary angioplasty. J Cardiovasc Med (Hagerstown). 2016;17 Suppl 2:e129–31. https://doi.org/10.2459/JCM.0000000000000166.

    Article  PubMed  Google Scholar 

  20. Komatsu S, Takahashi S, Toyama Y, et al. Angioscopy-guided selective aspiration thrombectomy for acute pulmonary thromboembolism. BMJ Case Rep. 2017;2017:bcr2017220059. https://doi.org/10.1136/bcr-2017-220059.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nakanishi N, Fukai K, Tsubata H, et al. Angioscopic evaluation during balloon pulmonary angioplasty in chronic thromboembolic pulmonary hypertension. Heart Lung Circ. 2019;28:655–9. https://doi.org/10.1016/j.hlc.2018.08.008.

    Article  PubMed  Google Scholar 

  22. Komatsu S, Takahashi S, Ohara T, et al. Aortic valve stenosis and atheromatous ascending aorta. Intern Med. 2017;56:2685–6. https://doi.org/10.2169/internalmedicine.8486-16.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kojima K, Fukamachi D, Hirayama A, et al. Clinical insights of non-obstructive general angioscopy for assessing atherosclerotic pathology of aortic valve in vivo. Int J Cardiovasc Imaging. 2021;37:1839. https://doi.org/10.1007/s10554-021-02183-6.

    Article  PubMed  Google Scholar 

  24. Nishi H, Higuchi Y, Takahashi T, et al. Aortic angioscopy assisted thoracic endovascular repair for chronic type B aortic dissection. J Cardiol. 2020;76:60–5. https://doi.org/10.1016/j.jjcc.2020.02.011.

    Article  PubMed  Google Scholar 

  25. Ikari Y, Nagaoka M, Kim JY, et al. The physics of guiding catheters for the left coronary artery in transfemoral and transradial interventions. J Invasive Cardiol. 2005;17:636–41.

    PubMed  Google Scholar 

  26. Ikari Y, Masuda N, Matsukage T, et al. Backup force of guiding catheters for the right coronary artery in transfemoral and transradial interventions. J Invasive Cardiol. 2009;21:570–4.

    PubMed  Google Scholar 

  27. Hiro T, Komatsu S, Fujii H, et al. Consensus standards for acquisition, measurement, and reporting of non-obstructive aortic Angioscopy studies: a report from the working Group of Japan Vascular Imaging Research Organization for standardization of non-obstructive aortic Angioscopy (version 2017). Angioscopy. 2018;4:1–11.

    Article  Google Scholar 

  28. Iwa N, Yutani C, Komatsu S, et al. Novel methods for detecting human cholesterol crystals from sampled blood. Lab Med. 2021;53:255. https://doi.org/10.1093/labmed/lmab078.

    Article  Google Scholar 

  29. Abela GS. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J Clin Lipidol. 2010;4:156–64. https://doi.org/10.1016/j.jacl.2010.03.003.

    Article  PubMed  Google Scholar 

  30. Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61. https://doi.org/10.1038/nature08938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Janoudi A, Shamoun FE, Kalavakunta JK, et al. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J. 2016;37:1959–67. https://doi.org/10.1093/eurheartj/ehv653.

    Article  CAS  PubMed  Google Scholar 

  32. Kronzon I, Saric M. Cholesterol embolization syndrome. Circulation. 2010;122:631–3.

    Article  PubMed  Google Scholar 

  33. Harloff A, Simon J, Brendecke S, et al. Complex plaques in the proximal descending aorta: an underestimated embolic source of stroke. Stroke. 2010;41:1145–50. https://doi.org/10.1161/STROKEAHA.109.577775.

    Article  PubMed  Google Scholar 

  34. Meissner I, Khandheria BK, Sheps SG, et al. Atherosclerosis of the aorta: risk factor, risk marker, or innocent bystander? A prospective population-based transesophageal echocardiography study. J Am Coll Cardiol. 2004;44:1018–24. https://doi.org/10.1016/j.jacc.2004.05.075.

    Article  PubMed  Google Scholar 

  35. Kojima K, Komatsu S, Kakuta T, et al. Aortic plaque burden predicts vascular events in patients with cardiovascular disease: the EAST-NOGA study. J Cardiol. 2022;79:144–52. https://doi.org/10.1016/j.jjcc.2021.08.028.

    Article  PubMed  Google Scholar 

  36. Higuchi Y, Hirayama A, Komatsu S, et al. Embolic stroke caused by aortic ruptured plaque and thrombus visualized by Angioscopy. JACC Case Rep. 2020;2:705–6. https://doi.org/10.1016/j.jaccas.2020.02.023.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Matsumoto N, Takahashi M, Katano T, et al. Cholesterol crystal in thrombus removed by mechanical thrombectomy should be a strong marker for Aortogenic embolic stroke. J Stroke Cerebrovasc Dis. 2020;29:105178. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105178.

    Article  PubMed  Google Scholar 

  38. Yutani C, Nagano T, Komatsu S, et al. Visible-free cholesterol crystal emboli adjacent to microinfarcts in myocardial capillaries and arterioles on H&E-stained frozen sections of an autopsied patient. BMJ Case Rep. 2018;2018:bcr2018225558. https://doi.org/10.1136/bcr-2018-225558.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Komatsu S, Yutani C, Takahashi S, et al. Acute myocardial infarction caused by distal embolization from a proximal ruptured plaque. JACC Case Rep. 2020;2:33–4. https://doi.org/10.1016/j.jaccas.2019.11.042.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Abela GS, Kalavakunta JK, Janoudi A, et al. Frequency of cholesterol crystals in culprit coronary artery aspirate during acute myocardial infarction and their relation to inflammation and myocardial injury. Am J Cardiol. 2017;120:1699–707. https://doi.org/10.1016/j.amjcard.2017.07.075.

    Article  CAS  PubMed  Google Scholar 

  41. Narula N, Dannenberg AJ, Olin JW, et al. Pathology of peripheral artery disease in patients with critical limb ischemia. J Am Coll Cardiol. 2018;72:2152–63. https://doi.org/10.1016/j.jacc.2018.08.002.

    Article  CAS  PubMed  Google Scholar 

  42. Pervaiz MH, Durga S, Janoudi A, et al. PET/CTA detection of muscle inflammation relate to cholesterol crystal emboli without arterial obstruction. J Nucl Cardiol. 2018;25:433–40. https://doi.org/10.1007/s12350-017-0826-y.

    Article  PubMed  Google Scholar 

  43. Komatsu S, Yutani C, Takewa M, et al. Detecting free cholesterol crystals in a patient with spontaneous cholesterol embolization syndrome. JACC Case Rep. 2020;2:615–8. https://doi.org/10.1016/j.jaccas.2019.12.022.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kojima K, Kimura S, Hayasaka K, et al. Aortic plaque distribution, and association between aortic plaque and atherosclerotic risk factors: an aortic Angioscopy study. J Atheroscler Thromb. 2019;26(11):997–1006. https://doi.org/10.5551/jat.48181.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Takahashi S, Komatsu S, Yutani C, et al. Serial observation of aortic puff-chandelier rupture for 2 years by non-obstructive general Angioscopy. Circ J. 2021;86:476. Epub ahead of print. https://doi.org/10.1253/circj.CJ-21-0767.

    Article  PubMed  Google Scholar 

  46. Ridker PM, Devalaraja M, Baeres FMM, et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2021;10289:2060–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kodama, K., Yutani, C., Komatsu, S., Takahashi, S. (2023). Detecting Cholesterol Crystals Clinically in Spontaneous Aortic Plaque Rupture. In: Abela, G.S., Nidorf, S.M. (eds) Cholesterol Crystals in Atherosclerosis and Other Related Diseases. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-41192-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41192-2_6

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-41191-5

  • Online ISBN: 978-3-031-41192-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics