Skip to main content

Shannon Sampling Theorem via Poisson, Cauchy, Jacobi, and Levin

  • Chapter
  • First Online:
Sampling, Approximation, and Signal Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Young provides an excellent discussion of this material in [75].

  2. 2.

    Please also see [31, 34, 36, 55, 56, 58, 59, 66, 69, 73, 74, 76].

  3. 3.

    We say the \(\psi (r) <^{\mathrm {as}} \phi (r)\) if \(\psi (r) < \phi (r)\) for all r sufficiently large.

  4. 4.

    Chapter 3 of Prenter [64] provides an excellent discussion of these ideas.

  5. 5.

    Please also see [7, 8, 10,11,12, 15, 19, 20, 24, 25, 70].

  6. 6.

    It is of interest to compare the envelope condition above with the Paley-Wiener-Schwartz growth condition. Note that Hörmander’s envelope condition is essentially the inversion of the Paley-Wiener-Schwartz growth condition.

References

  1. L.V. Ahlfors, Conformal Invariants (McGraw-Hill, New York, 1973)

    Google Scholar 

  2. L.V. Ahlfors, Complex Analysis (Third Edition) (McGraw-Hill, New York, 1979)

    Google Scholar 

  3. T.M. Apostol, Mathematical Analysis (Addison-Wesley, Reading, MA, 1974)

    Google Scholar 

  4. J. Barros-Neto, An Introduction to the Theory of Distributions (Marcel Dekker, New York, 1973)

    Google Scholar 

  5. M.G. Beaty, J.R. Higgins, Aliasing and Poisson summation in the sampling theory of Paley-Weiner spaces. J. Fourier Anal. Appl. 1, 67–85 (1994)

    Article  MathSciNet  Google Scholar 

  6. J.J. Benedetto, Harmonic Analysis and Applications (CRC Press, Boca Raton, FL, 1997)

    Google Scholar 

  7. C.A. Berenstein, S.D. Casey, E.V. Patrick, Systems of convolution equations, deconvolution, and wavelet analysis, in U of MD Systems Research Center whitepaper (1990)

    Google Scholar 

  8. C.A. Berenstein, R. Gay, Complex Variables (An Introduction) (Springer, New York, 1991)

    Book  Google Scholar 

  9. C.A. Berenstein, R. Gay, A. Yger, Inversion of the local Pompeiu transform. Journal D’Analyse Mathématique 54, 259–287 (1990)

    Article  MathSciNet  Google Scholar 

  10. C.A. Berenstein, R. Gay, A. Vidras, A. Yger, Residue Currents and Bezout Identities (Birkhauser, Boston, 1993)

    Book  Google Scholar 

  11. C.A. Berenstein, E.V. Patrick, Exact deconvolution for multiple convolution sensors-an overview plus performance characterizations for imaging sensors, in Proceedings of the IEEE (Special Issue on Multidimensional Signal Processing), vol. 78(4) (1990), pp. 723–34

    Google Scholar 

  12. C.A. Berenstein, B.A. Taylor, The ‘three squares’ theorem for continuous functions. Arch. Rat. Mech. Anal. 63, 253–259 (1977)

    Article  MathSciNet  Google Scholar 

  13. C.A. Berenstein, B.A. Taylor, The three squares theorem, a local version, in Analysis and Partial Differential Equations: a Collection of Papers Dedicated to Mischa Cotlar, ed. by C. Sadosky (Dekker, New York, 1989), pp. 35–50

    Google Scholar 

  14. C.A. Berenstein, A. Yger, Le probleme de la deconvolution. J. Funct. Anal. 54, 113–160 (1983)

    Article  MathSciNet  Google Scholar 

  15. C.A. Berenstein, A. Yger, A local version of the two circles theorem. Isr. J. Math. 55, 267–288 (1986)

    Article  MathSciNet  Google Scholar 

  16. C.A. Berenstein, A. Yger, Analytic Bezout identities. Adv. Math. 10, 51–74 (1989)

    Article  MathSciNet  Google Scholar 

  17. C.A. Berenstein, A. Yger, Bounds for the degrees in the division problem. Mich. Math. J. 37, 259–287 (1990)

    Article  MathSciNet  Google Scholar 

  18. C.A. Berenstein, A. Yger, Effective Bezout identities in \({\mathbb {Q}}[z_1,\,\dots ,\,z_n]\). Acta Math. 166, 69–120 (1991)

    Google Scholar 

  19. C.A. Berenstein, A. Yger, Une formulae de Jacobi et ses consequences. Ecole Normale Sup. Paris 24, 363–377 (1991)

    Google Scholar 

  20. C.A. Berenstein, A. Yger, B.A. Taylor, Sur quelques formules explicites de deconvolution. J. Opt. (Paris) 14, 75–82 (1983)

    Article  Google Scholar 

  21. P.L. Butzer, P.J.S.G. Ferreira, G. Schmeisser, R.L. Stens, The summation formulae of Euler–Maclaurin, Abel–Plana, Poisson, and their interconnections with the approximate sampling formula of signal snalysis. Results. Math. 59, 359–400 (2011)

    Article  MathSciNet  Google Scholar 

  22. S.D. Casey, Adaptive signal processing, Chapter 11, in Excursions in Harmonic Analysis, Volume 4, Springer-Birkhäuser book in the Applied and Numerical Harmonic Analysis Series (2015), pp. 261–290

    Google Scholar 

  23. S.D. Casey, Windowing systems for time-frequency analysis. Sampling Theory in Signal and Image Processing 11(2–3), 221–251 (2012)

    Article  MathSciNet  Google Scholar 

  24. S.D. Casey, Two problems from industry and their solutions via Harmonic and Complex Analysis. The Journal of Applied Functional Analysis 2(4), 427–460 (2007)

    MathSciNet  Google Scholar 

  25. S.D. Casey, Modulation and sampling techniques for multichannel deconvolution. J. Inverse Ill-Posed Probl. 7(7), 401–441 (1997)

    Google Scholar 

  26. S.D. Casey, D.F. Walnut, Systems of convolution equations, deconvolution, Shannon sampling theorem, and the wavelet and Gabor transforms. SIAM Rev. 36(4) 537–577 (1994)

    Article  MathSciNet  Google Scholar 

  27. S.D. Casey, D.F. Walnut, Residue and sampling techniques in deconvolution, Chapter 9 in Modern Sampling Theory: Mathematics and Applications. Birkhauser Research Monographs, ed. by P. Ferreira, J.J. Benedetto (Birkhauser, Boston, 2001), pp. 193–217

    Google Scholar 

  28. S.D. Casey, Windowing methods and systems for use in time-frequency analysis—Sampling architectures for ultra-wideband systems. Patent Number: 10,455,426, Date of Patent: October 22, 2019, Application 15/274450, Continuation-in-part of 13/464843 (2019)

    Google Scholar 

  29. S.D. Casey, B.M. Sadler, Windowing methods and systems for use in time-frequency analysis. Patent Number: 9,454,511 B2, Date of Patent: September 27, 2016, Publication Number: US 2013/0028297 A1, Application Number 13/464843 (2016)

    Google Scholar 

  30. J.B Conway, Functions of One Complex Variable (Second Edition). Graduate Texts in Mathematics, vol. 11 (Springer, New York, 1978)

    Google Scholar 

  31. I. Daubechies, Ten Lectures on Wavelets. (CBMS–NSF Conference Series in Applied Mathematics, vol. 61) (SIAM, Philadelphia, PA, 1992)

    Google Scholar 

  32. P.L. Duren, Theory of\(H^p\)Spaces (Dover Publications, New York, 2000)

    Google Scholar 

  33. H. Dym, H.P. McKean, Fourier Series and Integrals (Academic Press, Orlando, FL, 1972)

    Google Scholar 

  34. R.J. Duffin, A.C. Schaeffer, A class of non-harmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  Google Scholar 

  35. Y.C. Eldar, Sampling Theory (Beyond Bandlimited Systems) (Cambridge University Press, Cambridge, 2015)

    Google Scholar 

  36. A.G. Garcia, Orthogonal sampling formulas: a unified approach. SIAM Rev. 42(3), 499–512 (2000)

    Article  MathSciNet  Google Scholar 

  37. L. Grafakos, Classical and Modern Fourier Analysis (Pearson Education, Upper Saddle River, NJ, 2004)

    Google Scholar 

  38. K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2000)

    Google Scholar 

  39. J.R. Higgins, Five short stories about the cardinal series. Bull. AMS 12(1), 45–89 (1985)

    Article  MathSciNet  Google Scholar 

  40. J.R. Higgins, Sampling theorems and the contour integral method. Applic. Anal. 41, 155–171 (1991)

    Article  MathSciNet  Google Scholar 

  41. J.R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations (Clarendon Press, Oxford, 1996)

    Book  Google Scholar 

  42. J.R. Higgins, G. Schmeisser, J.J. Voss, The sampling theorem and several equivalent results in analysis. J. Comput. Anal. Appl. 2(4), 333–371 (2000)

    MathSciNet  Google Scholar 

  43. K. Hoffman, Banach Spaces of Analytic Functions (Dover Publications, New York, 1990)

    Google Scholar 

  44. L. Hörmander, Generators for some rings of analytic functions. Bull. Am. Math. Soc. 73, 943–949 (1967)

    Article  MathSciNet  Google Scholar 

  45. L. Hörmander, The Analysis of Linear Partial Differential Operators I (Distribution Theory and Fourier Analysis), 2nd edn. (Springer, New York, 1990)

    Google Scholar 

  46. J. Horváth, An introduction to distributions. Am. Math. Mon. 77(3), 227–240 (1970)

    Article  Google Scholar 

  47. A.J. Jerri, The Shannon sampling theorem—its various extensions and applications: a tutorial review. Proc. IEEE 65(11), 1565–1596 (1977)

    Article  Google Scholar 

  48. Y. Katznelson, An Introduction to Harmonic Analysis (Thiird Ediion) (Cambridge University, Cambridge, 2004)

    Book  Google Scholar 

  49. J. Kelleher, B.A. Taylor, Finitely generated ideals in rings of analytic functions. Math. Ann. 193, 225–237 (1971)

    Article  MathSciNet  Google Scholar 

  50. V.A. Kotel’nikov, On the transmission capacity of ‘ether’ and wire in electrocommunications. Izd. Red. Upr. Svyazi RKKA (Moscow) (1933)

    Google Scholar 

  51. T.W. Körner, Fourier Analysis (Cambridge University, Cambridge, 1988)

    Book  Google Scholar 

  52. B.Ya. Levin, Lectures on Entire Functions (American Mathematical Society, Providence, RI, 1996)

    Google Scholar 

  53. B.Ya. Levin, Distribution of Zeros of Entire Functions. Translations of Mathematical Monographs, vol. 5 (American Mathematical Society, Providence, RI, 1980)

    Google Scholar 

  54. B.Ya. Levin, On bases of exponential functions on \(L^2\). Zap. Mekh.-Mat. Fak. i Khar’kov. Mat, Obshch. 27, 39–48 (1961)

    Google Scholar 

  55. R. Marks, Introduction to Shannon sampling theorem and Interpolation Theory (Springer, New York, 1991)

    Book  Google Scholar 

  56. F. Marvasti, Nonuniform sampling, in Advanced Topics in Shannon sampling theorem and Interpolation Theory, ed. by R. Marks (Springer, New York, 1993)

    Google Scholar 

  57. Y. Meyer, Wavelets: Algorithms and Applications. Ryan, R.D, translator (SIAM, Philadelphia, PA, 1993)

    Google Scholar 

  58. H. Nyquist, Certain topics in telegraph transmission theory. AIEE Trans. 47, 617–644 (1928)

    Google Scholar 

  59. R. Paley, N. Wiener, Fourier Transform in the Complex Domain (American Math Society Colloquim Publications, New York, 2000), 19

    Google Scholar 

  60. A. Papoulis, The Fourier Integral and its Applications (McGraw-Hill, New York, 1962)

    Google Scholar 

  61. A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1977)

    Google Scholar 

  62. A. Papoulis, Generalized sampling expansion. IEEE Trans. Circuits and Systems 24(11), 652–654 (1977)

    Article  MathSciNet  Google Scholar 

  63. E. Petersen, G. Meisters, Non-Liouville numbers and a theorem of Hörmander. J. Funct. Anal. 29, 142–150 (1978)

    Article  Google Scholar 

  64. P.M. Prenter, Splines and Variational Methods (Wiley, New York, 1975)

    Google Scholar 

  65. B. Rom, D. Walnut, Sampling on unions of shifted lattices in one dimension, in Harmonic Analysis and Applications, ed. by C. Heil (2006), pp. 289–323

    Google Scholar 

  66. K. Seip, Interpolation and Sampling in Spaces of Analytic Functions. Iniversity Lecture Series, vol. 33 (American Mathematical Society, Providence, RI, 2004)

    Google Scholar 

  67. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  68. C.E. Shannon, Communications in the presence of noise. Proc. IRE. 37, 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  69. M. Unser, Sampling–50 years after Shannon. Proc. IEEE 88(4), 569–587 (2000)

    Article  Google Scholar 

  70. D.F. Walnut, Nonperiodic sampling of bandlimited functions on unions of rectangular lattices. J. Fourier Anal. Appl. 2(5), 435–452 (1996)

    Article  MathSciNet  Google Scholar 

  71. E.T. Whittaker, On the functions which are represented by the expansions of the interpolation theory. Proc. Roy. Soc. Edinb. 35, 181–194 (1915)

    Article  Google Scholar 

  72. J.M. Whittaker, Interpolatory Function Theory (Cambridge University Press, Cambridge, 1935)

    Google Scholar 

  73. N. Wiener, The Fourier Integral and Certain of its Applications (MIT Press, Cambridge, MA, 1933)

    Google Scholar 

  74. N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series (MIT Technology Press, Cambridge, MA, 1949)

    Book  Google Scholar 

  75. R. Young, An Introduction to Nonharmonic Fourier Series (Academic Press, New York, 1980)

    Google Scholar 

  76. A.I. Zayed, Advances in Shannon’s Sampling Theory (CRC Press, Boca Raton, FL, 1993)

    Google Scholar 

Download references

Acknowledgements

The author thanks Professors J. Rowland Higgins, Carlos Berenstein, John Benedetto, Radu Balan, and David Walnut for several conversations related to the contents of the chapter. Professor Higgins’ passing was a sad event for our community. The author wishes to acknowledge his deep respect for J. R. Higgins. He was a truly excellent mathematician, an extremely knowledgeable math historian, and an even better person. He was a true blessing to our community.

The author’s research was partially supported by US Air Force Office of Scientific Research Grant Number FA9550-20-1-0030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Casey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Casey, S.D. (2023). Shannon Sampling Theorem via Poisson, Cauchy, Jacobi, and Levin. In: Casey, S.D., Dodson, M.M., Ferreira, P.J.S.G., Zayed, A. (eds) Sampling, Approximation, and Signal Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-41130-4_8

Download citation

Publish with us

Policies and ethics