Skip to main content

Application of Machine Learning Techniques to Solve the Problem of Skin Diseases Diagnosis

  • Chapter
  • First Online:
Reliability Engineering and Computational Intelligence for Complex Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 496))

  • 103 Accesses

Abstract

Solving the problem of remote diagnosis of diseases, including the use of telemedicine, is an urgent task. When diagnosing dermatological diseases, the input information is an image of a skin area with a certain skin lesion. Currently, machine learning is widely used in medicine, and, as a rule, machine learning methods solve the task of recognition and classification depending on the subject area. The problem of the research is the selection of the optimal algorithm or, as it is also called, the filter, which will increase the quality of the image so that the neural network can clearly understand the disease area and recognize it. In this study, Sobel methods, the method of principal components, and brightness normalization are used to improve image quality. After each processing, the data is fed to a convolutional neural network based on the TensorFlow framework. The developed neural network is used for skin diseases classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bihunyak, T.V., Bihuniak, K.O., Redko, O.S.: Clinical Polymorphysm and differential diagnostics of Lyme illness. Bulletin Scientific Res., 1 (2018)

    Google Scholar 

  2. Volosovets, O.P., Bolbot, Y.K., Beketova, G.V., Berezenko, V.S., Umanets, T.R., Rechkina, O.O. et al.: Allergic and non-allergic skin diseases in children of Ukraine: a retrospective study of the prevalence and incidence over the past 24 years. Medicni Perspektivi. 26(3) (2021)

    Google Scholar 

  3. Nittari, G., Khuman, R., Baldoni, S., Pallotta, G., Battineni, G., Sirignano, A., et al.: Telemedicine practice: review of the current ethical and legal challenges. Telemed. e-Health. 26, 1427–1437 (2020). https://doi.org/10.1089/tmj.2019.0158

    Article  Google Scholar 

  4. Son, H.M., Jeon, W., Kim, J., Heo, C.Y., Yoon, H.J., Park, J.U., et al.: AI-based localization and classification of skin disease with erythema. Sci. Rep. 11, 5350 (2021). https://doi.org/10.1038/s41598-021-84593-z

    Article  Google Scholar 

  5. Alkolifi Alenezi, N.S.: A method of skin disease detection using image processing and machine learning. Procedia Comput. Sci. 163, 85–92 (2019). https://doi.org/10.1016/j.procs.2019.12.09

  6. Patnaik, S.K., Sidhu, M.S., Gehlot, Y., Sharma, B., Muthu, P.: Automated skin disease identification using deep learning algorithm. Biomed. Pharmacology J. 11(3) (2018). https://doi.org/10.13005/bpj/1507

  7. Muhaba, K.A., Dese, K., Aga, T.M., Zewdu, F.T., Simegn, G.L.: Automatic skin disease diagnosis using deep learning from clinical image and patient information. Skin Health Disease 2(1) (2022). https://doi.org/10.1002/ski2.81

  8. Bandyopadhyay, S.K., Bose, P., Bhaumik, A., Poddar, S.: Machine learning and deep learning integration for skin diseases prediction. Int. J. Eng. Trends Technol. 70(3), 13–21 (2022). https://doi.org/10.14445/22315381/IJETT-V70I2P202

  9. Rajasekaran, G., Aiswarya, N., Keerthana, R.: Skin disease identification using image processing and machine learning techniques. Int. Res. J. Eng. Technol. 7(3), 1368–1371 (2020)

    Google Scholar 

  10. Rathod, J., Wazhmode, V., Sodha, A., Bhavathankar, P.: Diagnosis of skin diseases using convolutional neural networks. In: Proceedings of the 2nd International Conference on Electronics, Communication and Aerospace Technology (2018)

    Google Scholar 

  11. Malliga, S., Sherly Infanta, G., Sindoora, S., Yogarasi, S.: Skin disease detection and classification using deep learning algorithms. Int. J. Adv. Sci. Technol. 29, 255–260 (2020)

    Google Scholar 

  12. Wang, Z., Wang, K., Yang, F., Pan, S., Han, Y.: Image segmentation of overlapping leaves based on Chan–Vese model and Sobel operator. Inf. Process. Agric. 5(1) (2018). https://doi.org/10.1016/j.inpa.2017.09.005

  13. Hao, F., Xu, D., Chen, D., Hu, Y., Zhu, C.: Sobel operator enhancement based on eight-directional convolution and entropy. Int. J. Inf. Technol. 13(5) (2021). https://doi.org/10.1007/s41870-021-00770-3

  14. DermNet: DermNet Image Library, https://dermnetnz.org/image-library

  15. Jiang, J., Jin, Z., Wang, B., Ma, L., Cui, Y.: A Sobel operator combined with patch statistics algorithm for fabric defect detection. KSII Trans. Internet Inf. Syst. 14(2), 681–701 (2020). https://doi.org/10.3837/tiis.2020.02.012

    Article  Google Scholar 

  16. Wang, Q., Du, W., Ma, C., Gu, Z.: Gradient color leaf image segmentation algorithm based on Meanshift and K means. In: IEEE Advanced Information Technology, Electronic and Automation Control Conference (2021)

    Google Scholar 

  17. Iliukhin, S., Chernov, T., Polevoy, D., Fedorenko, F.: A method for spatially weighted image brightness normalization for face verification. In: Eleventh International Conference on Machine Vision (2019)

    Google Scholar 

  18. Kociołek, M., Strzelecki, M., Obuchowicz, R.: Does image normalization and intensity resolution impact texture classification? Comput. Med. Imaging Graphics, 81 (2020). https://doi.org/10.1016/j.compmedimag.2020.101716

  19. Pal, M.K., Porwal, A.: A Local Brightness Normalization (LBN) algorithm for destriping Hyperion images. Int. J. Remote Sens. 36(10), 2674–2696 (2015). https://doi.org/10.1080/01431161.2015.1043761

    Article  Google Scholar 

  20. Huizinga, W., Poot, D.H.J., Guyader, J.M., Klaassen, R., Coolen, B.F., van Kranenburg, M. et al.: PCA-based groupwise image registration for quantitative MRI. Med. Image Anal., 65–78 (2016). https://doi.org/10.1016/j.media.2015.12.004

  21. Bashir, R., Junejo, R., Qadri, N.N., Fleury, M., Qadri, M.Y.: SWT and PCA image fusion methods for multi-modal imagery. Multimed Tools Appl. 78(2), 1235–1263 (2019). https://doi.org/10.1007/s11042-018-6229-5

    Article  Google Scholar 

  22. Potapov, P.: On the loss of information in PCA of spectrum-images. Ultramicroscopy 182, 191–194 (2017). https://doi.org/10.1016/j.ultramic.2017.06.023

    Article  MathSciNet  Google Scholar 

  23. Ma, J., Yuan, Y.: Dimension reduction of image deep feature using PCA. J. Vis. Commun. Image Representation, 63 (2019). https://doi.org/10.1016/j.jvcir.2019.102578

  24. Zhou, C., Wang, L., Zhang, Q., Wei, X.: Face recognition based on PCA image reconstruction and LDA. Optik (Stuttg). 124(22), 5599–5603 (2013). https://doi.org/10.1016/j.ijleo.2013.04.108

    Article  Google Scholar 

  25. Murali Mohan Babu, Y.: PCA based image denoising. Signal Image Process 3(2), 236–244 (2012). https://doi.org/10.5121/sipij.2012.3218

  26. Alnagdawi, M.A., Shamsuddin, S.M.H.J., Hashim, S.Z.M., Aburumman, A.: Improve image registration jeffrey’s divergence method for insufficient overlap area using kmeans++ in remote sensed images. J. Theor. Appl. Inf. Technol. 97(5), 1571–1580 (2019)

    Google Scholar 

  27. Talpur, S., Khoso, N.: Advanced ambulatory operating stretcher learned by means of Convulational neural network (CNN). J. Biomed. Eng. Med. Imaging 5(3) (2018). https://doi.org/10.14738/jbemi.53.4660

  28. Kurniawan, K., Sedayu, B.B., Hakim, A.R., Erawan, I.M.S.: Classification of Rastrelligerkanagurta and Rastrelligerbrachysoma using Convulational Neural Network (CNN). In: IOP Conference Series: Earth and Environmental Science (2022)

    Google Scholar 

  29. Yadav, S., Rathod, R., Pawar, S.R, Pawar, V.S., More, S.: Application of deep convulational neural network in medical image classification. In: 2021 International Conference on Emerging Smart Computing and Informatics, ESCI 2021 (2021)

    Google Scholar 

  30. Park, J., Chen, J., Cho, Y.K., Kang, D.Y., Son, B.J.: CNN-based person detection using infrared images for night-time intrusion warning systems. Sensors 20(1) (2020). https://doi.org/10.3390/s20010034

  31. Chauhan, R., Ghanshala, K.K., Joshi, R.C.: Convolutional Neural Network (CNN) for image detection and recognition. In: ICSCCC 2018—1st International Conference on Secure Cyber Computing and Communications (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Kinshakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kinshakov, E., Parfenenko, Y. (2023). Application of Machine Learning Techniques to Solve the Problem of Skin Diseases Diagnosis. In: van Gulijk, C., Zaitseva, E., Kvassay, M. (eds) Reliability Engineering and Computational Intelligence for Complex Systems. Studies in Systems, Decision and Control, vol 496. Springer, Cham. https://doi.org/10.1007/978-3-031-40997-4_7

Download citation

Publish with us

Policies and ethics