Skip to main content

Towards Efficient Long RFQ Accelerators

  • Chapter
  • First Online:
Radio-Frequency Quadrupole Accelerators

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 116 Accesses

Abstract

This chapter presents new solutions, which use multiple shorter and independent cavities, for the realization of future long RFQ accelerators. From the RF point of view, the use of shorter cavities has many advantages, e.g., the longitudinal field stability can be improved, the RF tuning can be simplified, and a large power amplifier that usually needs to be customized can be replaced by several small ones already available on the market. However, the beam matching between cavities can become an issue, especially at high current and low energies, because the RFQ has rather small electrode apertures and its focusing system always varies with time. Benefiting from the new design approaches introduced in Chap. 2 and some other special ideas, two efficient multi-cavity RFQ accelerators have been designed:

  • One > 9-m-long MEGLET-style RFQ accelerator based on the IH structure for 20 emA uranium ions.

  • One > 6-m-long SEGLER-style RFQ accelerator based on the 4-rod structure for 105 emA protons.

This kind of multi-cavity RFQ accelerators can also be used for the experimental demonstration of MEGLET- or SEGLER-style emittance transfers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.E. Laxdal, RFQ-IH radioactive beam linac for ISAC. AIP Conf. Proc. 473, 546 (1999)

    ADS  Google Scholar 

  2. U. Ratzinger, K. Kaspar, E. Malwitz, S. Minaev, R. Tiede, The GSI 36 MHz high-current IH-type RFQ and HIIF–relevant extensions. Nucl. Instrum. Methods Phys. Res. Sect. A 415 (1998)

    Google Scholar 

  3. C. Zhang, H. Podlech, E. Tanke, Realizing long radio-frequency quadrupole accelerators with multiple shorter and independent cavities. Phys. Rev. Accel. Beams 23, 042003 (2020)

    Article  ADS  Google Scholar 

  4. D.D. Armstrong, W.D. Cornelius, F.O. Purser, R.A. Jameson, T.P. Wangler, RFQ development at Los Alamos. LANL report no. LA-UR-84-498 (1984)

    Google Scholar 

  5. R.A. Jameson, Introduction to RFQ session, in Proceedings of LINAC (1984)

    Google Scholar 

  6. L.M. Young, Tuning and stabilization of RFQ’s, in Proceedings of LINAC (1990)

    Google Scholar 

  7. M.J. Browman, L.M. Young, coupled radio-frequency quadrupoles as compensated structures, in Proceedings of LINAC (1990)

    Google Scholar 

  8. L.M. Young, Operations of the LEDA resonantly coupled RFQ, in Proceedings of PAC (2001)

    Google Scholar 

  9. A. Pisent, M. Comunian, A. Palmieri, G.V. Lamanna, D. Barni, TRASCO RFQ, in Proceedings of LINAC (2000)

    Google Scholar 

  10. F.D. McDaniel et al., The tandem-RFQ linac booster at Sandia National Laboratories. AIP Conf. Proc. 680, 986 (2003)

    Article  ADS  Google Scholar 

  11. G. Bisoffi et al., Superconducting RFQ’s ready for ion beam operation at INFN-LNL, in Proceedings of EPAC (2002)

    Google Scholar 

  12. A. Bechtold, H. Podlech, Proposal of a normal conducting CW-RFQ for the EURISOL post-accelerator and a dedicated β-beam linac concept, in Proceedings of EPAC (2006)

    Google Scholar 

  13. K. Kaspar, U. Ratzinger, Design of the GSI 36 MHz RFQ accelerator on the base of mafia calculations, in Proceedings of EPAC (1996)

    Google Scholar 

  14. A. Kolomiets et al., Upgrade of the unilac high current injector RFQ, in Proceedings of LINAC (2008)

    Google Scholar 

  15. A.K. Mitra, R.L. Poirier, High power test of the 35 MHz spiral re-buncher cavity for the TRIUMF ISAC facility, in Proceedings of EPAC (2000)

    Google Scholar 

  16. https://github.com/dynac-source/dynac-source

  17. Y. Bylinsky et al., Dynamics and tolerances for the CERN interdigital H linac, in Proceedings of LINAC (1992)

    Google Scholar 

  18. P. Lapostolle, E. Tanke, S. Valero, Comparison of computational methods and results concerning the simulation of IH structures with the codes LORAS and DYNAC. CERN report no. PS/Hi/Note 92-02 (1992)

    Google Scholar 

  19. J.-H. Jang, I.S. Hong, H. Jang, D. Jeon, H. Jin, H.J. Kim, Beam optics of RISP linac using dynac code, in Proceedings of IPAC (2015)

    Google Scholar 

  20. E. Tanke et al., Benchmark of beam dynamics code DYNAC using the ESS proton linac, in Proceedings of LINAC (2014)

    Google Scholar 

  21. E. Tanke, M. Eshraqi, Y. Levinsen, A. Ponton, S. Valero, Status of and plans for the beam dynamics program DYNAC, in Proceedings of LINAC (2016)

    Google Scholar 

  22. W. Wittmer et al., Online modeling of the rare isotope reaccelerator – ReA3, in Proceedings of IPAC (2014)

    Google Scholar 

  23. T. Yoshimoto, M. Ikegami, IMPACT model for ReA and its benchmark with DYNAC, in Proceedings of LINAC (2016)

    Google Scholar 

  24. R. Tiede et al., LORASR code development, in Proceedings of EPAC (2006)

    Google Scholar 

  25. H. Podlech et al., Conceptual design of the proton LINAC for the high brilliance neutron source HBS, in Proceedings of IPAC (2019)

    Google Scholar 

  26. T. Brückel, T. Gutberlet (eds.), Conceptual design report – Jülich high brilliance neutron source (HBS). ISBN 978-3-95806-501-7 (2020)

    Google Scholar 

  27. H. Podlech et al., The MYRRHA-project, in Proceedings of NAPAC (2019)

    Google Scholar 

  28. D. Schrage et al., CW RFQ fabrication and engineering, in Proceedings of LINAC (1998)

    Google Scholar 

  29. K. Hasegawa et al., Development of a high intensity RFQ at JAERI. J. Nucl. Sci. Technol. 34(7) (1997)

    Google Scholar 

  30. R. Ferdinand, P.Y. Beauvais, The IPHI project, in Proceedings of HB (2004)

    Google Scholar 

  31. E. Fagotti et al., Beam commissioning of the IFMIF EVEDA very high power RFQ, in Proceedings of IPAC (2018)

    Google Scholar 

  32. M. Droba, HBS MEBT1 design. Internal report, IAP Frankfurt (2022)

    Google Scholar 

  33. M. Schwarz et al., Proton linac design for the high brilliance neutron source HBS, in Proceedings of IPAC (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, C. (2023). Towards Efficient Long RFQ Accelerators. In: Radio-Frequency Quadrupole Accelerators. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-031-40967-7_5

Download citation

Publish with us

Policies and ethics