Skip to main content

Solving Modal Logic Problems by Translation to Higher-Order Logic

  • Conference paper
  • First Online:
Logic and Argumentation (CLAR 2023)

Abstract

This paper describes an evaluation of Automated Theorem Proving (ATP) systems on problems taken from the QMLTP library of first-order modal logic problems. Principally, the problems are translated to higher-order logic in the TPTP language using an embedding approach, and solved using higher-order logic ATP systems. Additionally, the results from native modal logic ATP systems are considered, and compared with those from the embedding approach. The findings are that the embedding process is reliable and successful, the choice of backend ATP system can significantly impact the performance of the embedding approach, native modal logic ATP systems outperform the embedding approach, and the embedding approach can cope with a wider range modal logics than the native modal systems considered.

T. Scholl–Independent researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All the problems and results are available from the QMLTP directory of the TPTP World’s non-classical logic Github repository at

    https://github.com/TPTPWorld/NonClassicalLogic.

  2. 2.

    http://www.iltp.de/qmltp.

  3. 3.

    The syntax format of QMLTP is not introduced here. For uniformity, the TPTP syntax standards and the extensions to modal logic are introduced in Sect. 3.

  4. 4.

    The development of TPTP World standards for writing ATP solutions beyond common derivations and models is still necessary; see, e.g., [37].

  5. 5.

    http://www.tptp.org/TPTP/SyntaxBNF.html.

  6. 6.

    This slightly unusual form was chosen to reflect the first-order functional style, but by making the application explicit the formulae can be parsed in Prolog – a long standing principle of the TPTP languages [51].

  7. 7.

    The property names presented in this work supersede those used in earlier works. The $designation used to be called $constants, while the $domains used to be called $quantification.

  8. 8.

    https://github.com/leoprover/logic-embedding.

  9. 9.

    http://www.iltp.de/qmltp/problems.html.

  10. 10.

    The automation pipeline presented here does support multi-modal logic reasoning. However, during experimentation, it was revealed that the expected results documented in the QMLTP library for the multi-modal MML problem domain seem to be erroneous, and they have been excluded from the evaluation. These issues will be assessed in more detail in future work.

  11. 11.

    As noted in Sect. 5.1, there are no expected results for decreasing domains (not documented in the QMLTP), and for some QMLTP problems it is unknown whether or not they are theorems with a given combination of properties.

  12. 12.

    The strength of a logic refers to the set of theorems of the particular logic, i.e., a logic \(L_1\) is stronger than a logic \(L_2\) if \(\textrm{theorems}(L_2) \subseteq \textrm{theorems}(L_1)\). This is not a complete nor linear order but rather a partial order relation, e.g., as visualized by the modal logic cube [22]. For example, S5 is stronger than K, assuming the other logic parameters (domain semantics, etc.) remain the same.

  13. 13.

    The conditions stated in [40] for “presenting results of modal ATP systems based on the QMLTP library” say that “no part of the problems may be modified”. As such the results presented in this paper for the corrected versions of the QMLTP problems cannot be called “results for problems from the QMLTP”. But pragmatically, the results on the set of (corrected) problems are comparable with the results on the original QMLTP problems.

References

  1. Andrews, P.: General models and extensionality. J. Symbolic Logic 37(2), 395–397 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_24

    Chapter  Google Scholar 

  3. Barcan, R.: A functional calculus of first order based on strict implication. J. Symbolic Logic 11, 1–16 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P.: Superposition for full higher-order logic. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 396–412. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_23

    Chapter  Google Scholar 

  5. Benzmüller, C., Brown, C., Kohlhase, M.: Higher-order semantics and extensionality. J. Symbolic Logic 69(4), 1027–1088 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Gabbay, D., Siekmann, J., Woods, J. (eds.) Handbook of the History of Logic, vol. 9 - Computational Logic, pp. 215–254. North Holland, Elsevier (2014)

    Google Scholar 

  7. Benzmüller, C., Otten, J., Raths, T.: Implementing and evaluating provers for first-order modal logics. In: De Raedt, L., et al. (eds.) Proceedings of the 20th European Conference on Artificial Intelligence, pp. 163–168. Frontiers in Artificial Intelligence and Applications, IOS Press (2012)

    Google Scholar 

  8. Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory. Logica Univ. 7(1), 7–20 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benzmüller, C., Raths, T.: HOL based first-order modal logic provers. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 127–136. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_9

    Chapter  MATH  Google Scholar 

  10. Benzmüller, C., Woltzenlogel Paleo, B.: The inconsistency in gödel’s ontological argument: a success story for AI in metaphysics. In: Kambhampati, S. (ed.) Proceedings of the 25th International Joint Conference on Artificial Intelligence, pp. 936–942. AAAI Press (2016)

    Google Scholar 

  11. Bhayat, A., Reger, G.: A combinator-based superposition calculus for higher-order logic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp. 278–296. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9_16

    Chapter  Google Scholar 

  12. Blackburn, P., van Benthem, J., Wolther, F.: Handbook of Modal Logic. No. 3 in Studies in Logic and Practical Reasoning, Elsevier Science (2006)

    Google Scholar 

  13. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  14. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5_11

    Chapter  Google Scholar 

  15. Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_11

    Chapter  Google Scholar 

  16. del Cerro, L.F., Fauthoux, D., Gasquet, O., Herzig, A., Longin, D., Massacci, F.: Lotrec: the generic tableau prover for modal and description logics. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 453–458. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45744-5_38

    Chapter  Google Scholar 

  17. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5, 56–68 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  18. van Ditmarsch, H., Halpern, J., van der Hoek, W., Kooi, B.: Handbook of Epistemic Logic. College Publications, Norcross (2015)

    Google Scholar 

  19. Eén, N., Sörensson, N.: MiniSat - a SAT solver with conflict-clause minimization. In: Bacchus, F., Walsh, T. (eds.) Posters of the 8th International Conference on Theory and Applications of Satisfiability Testing (2005)

    Google Scholar 

  20. Fitting, M., Mendelsohn, R.: First-Order Modal Logic. Kluwer (1998)

    Google Scholar 

  21. Frege, F.: Grundgesetze der Arithmetik. Jena (1893 1903

    Google Scholar 

  22. Garson, J.: Modal Logic. In: Zalta, E. (ed.) Stanford Encyclopedia of Philosophy. Stanford University, Stanford (2018)

    Google Scholar 

  23. Gibbons, J., Wu, N.: Folding domain-specific languages: deep and shallow embeddings (Functional Pearl). In: Jeuring, J., Chakravarty, M. (eds.) Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming, pp. 339–347. ACM Press (2014)

    Google Scholar 

  24. Gleißner, T.: A Framework for Higher-Order Modal Logic Theorem Proving. Master’s thesis, Freie Universität Berlin, Berlin, Germany (2019)

    Google Scholar 

  25. Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal logic. In: Eiter, T., Sands, D. (eds.) Proceedings of the 21st International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, pp. 14–30. No. 46 in EPiC Series in Computing, EasyChair Publications (2017)

    Google Scholar 

  26. Gordon, M., Melham, T.: Introduction to HOL, a Theorem Proving Environment for Higher Order Logic. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  27. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031814

    Chapter  Google Scholar 

  28. Henkin, L.: Completeness in the theory of types. J. Symbolic Logic 15(2), 81–91 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hustadt, U., Schmidt, R.A.: MSPASS: modal reasoning by translation and first-order resolution. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 67–71. Springer, Heidelberg (2000). https://doi.org/10.1007/10722086_7

    Chapter  MATH  Google Scholar 

  30. Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL Light (2013). arXiv:1309.4962

  31. Kripke, S.: Semantical considerations on modal logic. Acta Philosophica Fennica 16, 83–94 (1963)

    MathSciNet  MATH  Google Scholar 

  32. Lindblad, F.: A focused sequent calculus for higher-order logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 61–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_5

    Chapter  Google Scholar 

  33. Nalon, C., Hustadt, U., Dixon, C.: KSP: architecture, refinements, strategies and experiments. J. Autom. Reasoning 64(3), 461–484 (2020)

    Article  MATH  Google Scholar 

  34. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): : 5. the rules of the game. In: Isabelle/HOL. LNCS, vol. 2283, pp. 67–104. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9_5

  35. Otten, J.: MleanCoP: a connection prover for first-order modal logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 269–276. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_20

    Chapter  Google Scholar 

  36. Otten, J.: The nanoCoP 2.0 connection provers for classical, intuitionistic and modal logics. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842, pp. 236–249. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86059-2_14

    Chapter  MATH  Google Scholar 

  37. Otten, J., Sutcliffe, G.: Using the TPTP language for representing derivations in tableau and connection Calculi. In: Konev, B., Schmidt, R., Schulz, S. (eds.) Proceedings of the Workshop on Practical Aspects of Automated Reasoning, 5th International Joint Conference on Automated Reasoning, pp. 90–100 (2010)

    Google Scholar 

  38. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.: PVS: combining specification, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5_91

    Chapter  Google Scholar 

  39. Papacchini, F., Nalon, C., Hustadt, U., Dixon, C.: Efficient local reductions to basic modal logic. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 76–92. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_5

    Chapter  Google Scholar 

  40. Raths, T., Otten, J.: The QMLTP problem library for first-order modal logics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 454–461. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_35

    Chapter  Google Scholar 

  41. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 495–507. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_29

    Chapter  Google Scholar 

  42. Siekmann, J., Benzmüller, C., Autexier, S.: Computer Supported Mathematics with OMEGA. J. Appl. Logic 4(4), 533–559 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Steen, A.: An extensible logic embedding tool for lightweight non-classical reasoning (2022). arXiv:2203.12352

  44. Steen, A.: logic-embedding v1.6 (2022). https://doi.org/10.5281/zenodo.5913216

  45. Steen, A., Benzmüller, C.: The higher-order prover leo-III. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 108–116. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_8

    Chapter  Google Scholar 

  46. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_28

    Chapter  Google Scholar 

  47. Sutcliffe, G.: TPTP, TSTP, CASC, etc. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 6–22. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74510-5_4

    Chapter  Google Scholar 

  48. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

    Google Scholar 

  49. Sutcliffe, G.: The logic languages of the TPTP World. Logic J. IGPL (2022). https://doi.org/10.1093/jigpal/jzac068

  50. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formalized Reasoning 3(1), 1–27 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP data-exchange formats for automated theorem proving tools. In: Zhang, W., Sorge, V. (eds.) Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems, pp. 201–215. No. 112 in Frontiers in Artificial Intelligence and Applications, IOS Press (2004)

    Google Scholar 

  52. Thion, V., Cerrito, S., Mayer, M.C.: A general theorem prover for quantified modal logics. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 266–280. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45616-3_19

    Chapter  Google Scholar 

  53. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator MetTeL2. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 492–495. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-8_41

    Chapter  Google Scholar 

  54. Vukmirović, P., Bentkamp, A., Blanchette, J., Cruanes, S., Nummelin, V., Tourret, S.: Making higher-order superposition work. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 415–432. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_24

    Chapter  Google Scholar 

  55. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 140–145. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_10

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their constructive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steen, A., Sutcliffe, G., Scholl, T., Benzmüller, C. (2023). Solving Modal Logic Problems by Translation to Higher-Order Logic. In: Herzig, A., Luo, J., Pardo, P. (eds) Logic and Argumentation. CLAR 2023. Lecture Notes in Computer Science(), vol 14156. Springer, Cham. https://doi.org/10.1007/978-3-031-40875-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40875-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40874-8

  • Online ISBN: 978-3-031-40875-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics