Abstract
Monitoring supercomputing facilities tends to be very time consuming and error-prone as the size of the collected data and the number of supervised devices do not cease to increase. In this paper, we propose a methodology to supervise those facilities based on measurements performed on devices at different levels of the infrastructure. Through its three phases -raw data cleaning, ML-based processing and visualisation using our developed tool- it facilitates the supervision of the computing center facilities and helps detecting irregular behaviours leading to manual correction actions. The case of the energy consumption is considered to illustrate the usefulness of this methodology and highlight its valuable results but it can be applied to any other target metric.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
CEA: “Commissariat à l’énergie atomique et aux énergies alternatives” for French Alternative Energies and Atomic Energy Commission.
- 2.
Partnership for Advanced Computing in Europe.
- 3.
Density-Based Spatial Clustering Applications with Noise.
- 4.
Hierarchical Density-Based Spatial Clustering Applications with Noise.
- 5.
Hierarchical Agglomerative Clustering.
References
Agerwala, T.: Challenges on the road to exascale computing. In: 22nd Annual International Conference on Supercomputing (2008)
Alvin, K., Barrett, B., Brightwell, R., Dosanjih, S.S.: On the path to exascale. Int. J. Distrib. Syst. Technol. 1, 1–22 (2011)
Bajal, E., Katara, V., Bhatia, M., Hooda, M.: A review of clustering algorithms: comparison of DBSCAN and K-mean with oversampling and t-SNE. J. Recent Patents Eng. 16(2), 17–31 (2022)
Bautista, E., Romanus, M., Davis, T., Whithney, C., Kubaska, T.: Collecting, monitoring, and analyzing facility and systems data at the national energy research scientific computing center. In: 48th International Conference on Parallel Processing (2019)
Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Predictive modeling for job power consumption in HPC systems. In: Kunkel, J.M., Balaji, P., Dongarra, J. (eds.) ISC High Performance 2016. LNCS, vol. 9697, pp. 181–199. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41321-1_10
Bourassa, N., Johnson, W., Broughton, J., Carter, D.M., Joy, S.: Operational data analytics: Optimizing the national energy research computing center cooling systems. In: 48th International Conference on parallel Processing, pp. 1–7 (2019)
Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 160–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_14
Corbalan, J., Alonso, L., Aneas, J., Brochard, L.: Energy optimization and analysis with ear. In: IEEE International Conference on Cluster Computing (2020)
Dani, M.C., Doreau, H., Alt, S.: K-means application for anomaly detection and log classification in HPC. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS (LNAI), vol. 10351, pp. 201–210. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60045-1_23
Dash website (2023). https://dash.plotly.com/. Accessed 08 Mar 2023
Gao, J., Zheng, F., Qi, F.: Sunway supercomputer architecture towards exascale computing: analysis and practice. China Inf. Sci. 64, 141101 (2021)
van der Maaten, L., Hinton, G.: Viualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Molan, M., Borghesi, A., Cesarini, D., Benini, L., Bartolini, A.: RUAD: unsupervised anomaly detection in HPC systems. Future Gener. Comput. Syst. 141(C), 542–554 (2023)
Ozer, G., Netti, A., Tafani, D., Schulz, M.: Characterizing HPC performance variation with monitoring and unsupervised learning. In: Jagode, H., Anzt, H., Juckeland, G., Ltaief, H. (eds.) ISC High Performance 2020. LNCS, vol. 12321, pp. 280–292. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59851-8_18
Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges. In: 9th International Conference on High Performance Computing for Computational Science (2010)
Shoukourian, H., Wilde, T., Labrenz, D., Bode, A.: Using machine learning for data center cooling infrastructure efficiency prediction. In: 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (2017)
Shrikant, K., Gupta, V., Khandare, A., Furia, P.: A comparative study of clustering algorithm. In: Balas, V.E., Semwal, V.B., Khandare, A. (eds.) Intelligent Computing and Networking. Lecture Notes in Networks and Systems, vol. 301, pp. 219–235. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-4863-2_19
Singh, H.V., Girdhar, A., Dahiya, S.: A literature survey based on DBSCAN algorithms. In: 6th International Conference on Intelligent Computing and Control Systems, pp. 751–758 (2022)
Su, Y., Zhou, J., Ying, J., Zhou, M., Zhou, B.: Computing infrastructure construction and optimization for high-performance computing and artificial intelligence. CCF Trans. High Perform. Comput. 3(4), 331–343 (2021). https://doi.org/10.1007/s42514-021-00080-x
Tanash, M., Dunn, B., Andresen, D., Hsu, W., Yang, H., Okanlawon, A.: Improving HPC system performance by predicting job resources via supervised machine learning. In: Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning). PEARC 2019 (2019)
Terai, M., Shoji, F., Tsukamoto, T., Yamochi, Y.: A study of operational impact on power usage effectiveness using facility metrics and server operation logs in the k computer. In: IEEE International Conference on Cluster Computing (2020)
Terai, M., Yamamoto, K., Miura, S., Shoji, F.: An operational data collecting and monitoring platform for Fugaku: system overviews and case studies in the prelaunch service period. In: Jagode, H., Anzt, H., Ltaief, H., Luszczek, P. (eds.) ISC High Performance 2021. LNCS, vol. 12761, pp. 365–377. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90539-2_24
TGCC-CEA. https://www-hpc.cea.fr/en/TGCC.html
Top500 the list (2022). https://www.top500.org/lists/top500/2022/11/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Anton, L., Willemot, S., Gougeaud, S., Zertal, S. (2023). ML-Based Methodology for HPC Facilities Supervision. In: Bienz, A., Weiland, M., Baboulin, M., Kruse, C. (eds) High Performance Computing. ISC High Performance 2023. Lecture Notes in Computer Science, vol 13999. Springer, Cham. https://doi.org/10.1007/978-3-031-40843-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-40843-4_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40842-7
Online ISBN: 978-3-031-40843-4
eBook Packages: Computer ScienceComputer Science (R0)