Skip to main content

Catalyst-ADIOS2: In Transit Analysis for Numerical Simulations Using Catalyst 2 API

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13999))

Included in the following conference series:

Abstract

In this article, we present a novel approach to bring in transit capabilities to numerical simulations which are already able to do in situ analysis with Catalyst 2. This approach combines the stable ABI of Catalyst 2, to replace the in situ backend at run-time, with a dedicated implementation that pushes data to the ADIOS2 SST Engine. At the end point of this engine, on the visualization nodes, the Catalyst 2 API calls are replayed using the Catalyst-ParaView implementation. This removes most of the blocking calls in the numerical simulation during output and analysis. This approach is released publicly under a permissive license and it opens lots of possibilities to improve performance of large numerical simulations by switching analysis backend without rebuilding the simulation code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer, A.C.: In situ methods, infrastructures, and applications on high performance computing platforms. In: Computer Graphics Forum, vol. 35, no. 3, pp. 577–597 (2016)

    Google Scholar 

  2. Moreland, K., et al.: VTK-m: accelerating the visualization toolkit for massively threaded architectures. IEEE Comput. Graph. Appl. 36(3), 48–58 (2016). https://doi.org/10.1109/MCG.2016.48

    Article  Google Scholar 

  3. Kress, J., et al.: Opportunities for cost savings with in-transit visualization. In: Sadayappan, P., Chamberlain, B.L., Juckeland, G., Ltaief, H. (eds.) ISC High Performance 2020. LNCS, vol. 12151, pp. 146–165. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50743-5_8

    Chapter  Google Scholar 

  4. https://gitlab.kitware.com/paraview/adioscatalyst

  5. Godoy, W.F., et al.: ADIOS 2: the adaptable input output system. a framework for high-performance data management. In: SoftwareX, vol. 12, p. 100561 (2020). https://doi.org/10.1016/j.softx.2020.100561

  6. Loring, B., et al.: Improving performance of M-to-N processing and data redistribution in in transit analysis and visualization. In: Eurographics Symposium on Parallel Graphics and Visualization (2020). https://doi.org/10.2312/pgv.20201073

  7. Larsen, M., et al.: The alpine in situ infrastructure: ascending from the ashes of strawman. In: Proceedings of the In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization, pp. 42–46 (2017)

    Google Scholar 

  8. Terraz, T., Ribes, A., Fournier, Y., Iooss, B., Raffin, B.: Melissa: large scale in transit sensitivity analysis avoiding intermediate files. SC 2017: International Conference for High Performance Computing, pp. 1–14. Storage and Analysis, Denver, CO, USA, Networking (2017)

    Google Scholar 

  9. Ramesh, S., Childs, H., Malony, A.: SERVIZ: a shared in situ visualization service. In: SC 2022: International Conference for High Performance Computing, Networking, Storage and Analysis (SC) (SC). Dallas, TX, US 2022, pp. 277–290 (2022)

    Google Scholar 

  10. Pugmire, D.: Fides: a general purpose data model library for streaming data. In: Jagode, H., Anzt, H., Ltaief, H., Luszczek, P. (eds.) ISC High Performance 2021. LNCS, vol. 12761, pp. 495–507. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90539-2_34

    Chapter  Google Scholar 

  11. Conduit: a successful strategy for describing and sharing data in situ. In: Presented at the ISAV 2022 Workshop, held in conjunction with SC 2022, 13th November 2022, Dallas, TX (2022)

    Google Scholar 

  12. Karlin, I. et al., LULESH 2.0 updates and changes, pp. 1–9 (2013). LLNL-TR-641973

    Google Scholar 

  13. https://github.com/jfavre/InSitu-Vis-Tutorial2022

  14. Ayachit, U.: Catalyst revised: rethinking the ParaView in situ analysis and visualization API. In: Jagode, H., Anzt, H., Ltaief, H., Luszczek, P. (eds.) ISC High Performance 2021. LNCS, vol. 12761, pp. 484–494. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90539-2_33

    Chapter  Google Scholar 

  15. https://gitlab.kitware.com/francois.mazen/lulesh-adios-catalyst

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Mazen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazen, F., Givord, L., Gueunet, C. (2023). Catalyst-ADIOS2: In Transit Analysis for Numerical Simulations Using Catalyst 2 API. In: Bienz, A., Weiland, M., Baboulin, M., Kruse, C. (eds) High Performance Computing. ISC High Performance 2023. Lecture Notes in Computer Science, vol 13999. Springer, Cham. https://doi.org/10.1007/978-3-031-40843-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40843-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40842-7

  • Online ISBN: 978-3-031-40843-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics