Abstract
Agent-based modeling is a computational dynamic modeling technique that may be less familiar to some readers. Agent-based modeling seeks to understand the behavior of complex systems by situating agents in an environment and studying the emergent outcomes of agent-agent and agent-environment interactions. In comparison with compartmental models, agent-based models offer simpler, more scalable, and flexible representation of heterogeneity, the ability to capture dynamic and static network and spatial context, and the ability to consider history of individuals within the model. In contrast, compartmental models offer faster development time with less programming required, lower computational requirements that do not scale with population, and the option for concise mathematical formulation with ordinary, delay, or stochastic differential equations supporting derivation of properties of the system behavior.
In this chapter, basic characteristics of agent-based models are introduced; advantages and disadvantages of agent-based models, as compared with compartmental models, are discussed; and two example agent-based infectious disease models are reviewed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development methods: review and analysis (2017). arXiv preprint arXiv:1709.08439
Bankes, S.C.: Agent-based modeling: a revolution? Proc. Natl. Acad. Sci. 99(suppl 3), 7199–7200 (2002)
Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al.: Manifesto for agile software development (2001)
Bonanni, P., Gershon, A., Gershon, M., Kulcsár, A., Papaevangelou, V., Rentier, B., Sadzot-Delvaux, C., Usonis, V., Vesikari, T., Weil-Olivier, C., de Winter, P., Wutzler, P.: Primary versus secondary failure after varicella vaccination. Pediatr. Infect. Dis. J. 32(7), e305–e313 (2013)
Brisson, M., Melkonyan, G., Drolet, M., Serres, G.D., Thibeault, R., Wals, P.D.: Modeling the impact of one- and two-dose varicella vaccination on the epidemiology of varicella and zoster. Vaccine 28(19), 3385–3397 (2010)
Bronfenbrenner, U.: Toward an experimental ecology of human development. Am. Psychologist 32(7), 513 (1977)
Bronfenbrenner, U.: Ecology of the family as a context for human development: research perspectives. Dev. Psychol. 22(6), 723 (1986)
Bronfenbrenner, U.: Ecological Systems Theory. Jessica Kingsley Publishers (1992)
Campbell, A., Ismail, S., Tan, B.: Literature review on one-dose and two-dose varicella vaccination. Can. Communicable Dis. Rep. 36(ACS-10), 1–24 (2010). https://doi.org/10.14745/ccdr.v36i00a10
Centers for Disease Control and Prevention: Pertussis frequently asked questions (2019). https://www.cdc.gov/pertussis/about/faqs.html
Cohen, J.I.: Herpes zoster. N. Eng. J. Med. 369(3), 255–263 (2013). https://doi.org/10.1056/nejmcp1302674
Duncan, J.R., Witkop, C.T., Webber, B.J., Costello, A.A.: Varicella seroepidemiology in united states air force recruits: a retrospective cohort study comparing immunogenicity of varicella vaccination and natural infection. Vaccine 35(18), 2351–2357 (2017)
Gershon, A., Takahashi, M., Seward, J.: Varicella Vaccine, pp. 837–869. Elsevier Saunders, Philadelphia (2012)
Gold, L., Shiell, A., Hawe, P., Riley, T., Rankin, B., Smithers, P.: The costs of a community-based intervention to promote maternal health. Health Educ. Res. 22(5), 648–657 (2006). https://doi.org/10.1093/her/cyl127
Government of Alberta: Interactive Health Data Application. http://www.ahw.gov.ab.ca/IHDA_Retrieval/
Government of Alberta: Open government program (2019). https://open.alberta.ca/opendata
Government of Canada: Pertussis (whooping cough) (2019). https://www.canada.ca/en/public-health/services/immunization/vaccine-preventable-diseases/pertussis-whooping-cough.html
Hammond, R.A.: Peer reviewed: complex systems modeling for obesity research. Preventing Chron. Dis. 6(3) (2009)
Hawe, P., Shiell, A., Riley, T., Gold, L.: Methods for exploring implementation variation and local context within a cluster randomised community intervention trial. J. Epidemiol. Community Health 58(9), 788–793 (2004)
Hempel, K., McDonald, W., Osgood, n.d., Fisman, D., Halperin, S.A., Crowcroft, N., Klein, N., Rohani, P., Doroshenko, A.: Evaluation of the effectiveness of maternal immunization against pertussis in Alberta using agent-based modeling: a Canadian Immunization Research Network study. Vaccine (Under review following resubmission for minor revisions)
Jeffries, R., Hendrickson, M.M., Anderson, A., Hendrickson, C.: Extreme programming installed. Addison-Wesley Professional (2001)
Kandeil, W., Savic, M., Ceregido, M.A., Guignard, A., Kuznetsova, A., Mukherjee, P.: Immune interference (blunting) in the context of maternal immunization with TDAP-containing vaccines: is it a class effect? Expert Rev. Vaccines 19(4), 341–352 (2020). https://doi.org/10.1080/14760584.2020.1749597
Kreuger, L.K., Qian, W., Osgood, N., Choi, K.: Agile design meets hybrid models: Using modularity to enhance hybrid model design and use. In: 2016 Winter Simulation Conference (WSC), pp. 1428–1438. IEEE (2016). https://doi.org/10.1109/WSC.2016.7822195
Kwong, J., Tanuseputro, P., Zagorski, B., Moineddin, R., Chan, K.: Impact of varicella vaccination on health care outcomes in Ontario, Canada: effect of a publicly funded program? Vaccine 26(47), 6006–6012 (2008)
Liu, X.C., Bell, C.A., Simmonds, K.A., Svenson, L.W., Fathima, S., Drews, S.J., Schopflocher, D.P., Russell, M.L.: Epidemiology of pertussis in Alberta, Canada 2004–2015. BMC Public Health 17(1), 539 (2017)
Macal, C.M., North, M.J.: Agent-based modeling and simulation. In: Proceedings of the 2009 Winter Simulation Conference (WSC), pp. 86–98. IEEE (2009)
McDonald, G.W., Bradford, L., Neapetung, M., Osgood, n.d., Strickert, G., Waldner, C.L., Belcher, K., McLeod, L., Bharadwaj, L.: Case study of collaborative modeling in an indigenous community. Water 14(17), 2601 (2022)
McDonnell, G.: Personal communication
Mejia Salazar, M.F., et al.: Social dynamics among mule deer and how they visit various environmental areas: implications for chronic wasting disease transmission. Ph.D. Thesis, University of Saskatchewan (2017)
Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso, S., Tomba, G.S., Wallinga, J., et al.: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5(3), e74 (2008)
Neumann, J.v.: Theory of Self-Reproducing Automata. Edited by Arthur W. Burks (1966)
Ogunjimi, B., Damme, P.V., Beutels, P.: Herpes zoster risk reduction through exposure to chickenpox patients: A systematic multidisciplinary review. PLoS ONE 8(6), e66485 (2013). https://doi.org/10.1371/journal.pone.0066485
Ogunjimi, B., Willem, L., Beutels, P., Hens, N.: Integrating between-host transmission and within-host immunity to analyze the impact of varicella vaccination on zoster. Elife 4, e07116 (2015)
Osgood, N.: Representing heterogeneity in complex feedback system modeling: computational resource and error scaling. In: 22nd International Conference of the System Dynamics Society (2004)
Osgood, N.: Using traditional and agent based toolsets for system dynamics: present tradeoffs and future evolution. In: Proceedings of the 25th International Conference of the System Dynamics Society, p. 19pp. Boston (2007)
Osgood, N.: Representing progression and interactions of comorbidities in aggregate and individual-based systems models. In: Proceedings of the 27th International Conference of the System Dynamics Society. Albuquerque, New Mexico (2009)
Osgood, N., Liu, J.: Towards closed loop modeling: Evaluating the prospects for creating recurrently regrounded aggregate simulation models using particle filtering. In: Proceedings of the 2014 Winter Simulation Conference, WSC ’14, pp. 829–841. IEEE Press, Piscataway (2014)
Ouwens, M.J., Littlewood, K.J., Sauboin, C., Téhard, B., Denis, F., Boëlle, P.Y., Alain, S.: The impact of 2-dose routine measles, mumps, rubella, and varicella vaccination in France on the epidemiology of varicella and zoster using a dynamic model with an empirical contact matrix. Clin. Ther. 37(4), 816–829.e10 (2015)
Parunak, H.V.D., Savit, R., Riolo, R.L.: Agent-based modeling vs. equation-based modeling: a case study and users’ guide. In: Sichman, J.S., Conte, R., Gilbert, N. (eds.) Multi-Agent Systems and Agent-Based Simulation, vol. 1534, pp. 10–25. Springer, Berlin (1998). https://doi.org/10.1371/10.1007/10692956_2
Rafferty, E., McDonald, W., Qian, W., Osgood, n.d., Doroshenko, A.: Evaluation of the effect of chickenpox vaccination on shingles epidemiology using agent-based modeling. PeerJ 6, e5012 (2018). https://doi.org/10.7717/peerj.5012
Rafferty, E.R., McDonald, W., Osgood, n.d., Doroshenko, A., Farag, M.: What we know now: an economic evaluation of chickenpox vaccination and dose timing using an agent-based model. Value Health 24(1), 50–60 (2021). https://doi.org/10.1016/j.jval.2020.10.004
Rafferty, E.R., McDonald, W., Osgood, n.d., Qian, W., Doroshenko, A.: Seeking the optimal schedule for chickenpox vaccination in Canada: using an agent-based model to explore the impact of dose timing, coverage and waning of immunity on disease outcomes. Vaccine 38(3), 521–529 (2020). https://doi.org/10.1016/j.vaccine.2019.10.065
Rahmandad, H., Sterman, J.: Heterogeneity and network structure in the dynamics of diffusion: comparing agent-based and differential equation models. Manag. Sci. 54(5), 998–1014 (2008). https://doi.org/10.1371/10.1287/mnsc.1070.0787
Railsback, S.F., Grimm, V.: Agent-Based and Individual-Based Modeling: A Practical Introduction. Princeton University Press, Princeton (2019)
Read, J.M., Keeling, M.J.: Disease evolution on networks: the role of contact structure. Proc. R. Soc. Lond. B: Biol. Sci. 270(1516), 699–708 (2003). https://doi.org/10.1098/rspb.2002.2305
Richardson, G.P.: System Dynamics, pp. 807–810. Springer, New York (2001). https://doi.org/10.1007/1-4020-0611-X_1030
Richardson, G.P.: Core of System Dynamics. System Dynamics: Theory and Applications pp. 11–20 (2020)
Safarishahrbijari, A., Teyhouee, A., Waldner, C., Liu, J., Osgood, n.d.: Predictive accuracy of part. filt. in dyn. models supporting outbreak proj. BMC Infect. Dis. 17(1), 1–12 (2017)
Smith, T., Rotondo, J., Desai, S., Deehan, H.: Pertussis: Pertussis surveillance in Canada: trends to 2012. Can. Communicable Dis. Rep. 40(3), 21 (2014)
Statistics Canada: Data products, 2008 census (2008).https://www150.statcan.gc.ca/n1/en/pub/82-224-x/2005000/5802980-eng.pdf?st=H2WZgClh
Statistics Canada: Data products, 2016 census (2016). https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-eng.cfm
Sterman, J.: Business Dynamics : Systems Thinking and Modeling for a Complex World. Title Match 2003: Murray Matheson. Irwin/McGraw-Hill, Boston (2000)
Tan, T., Dalby, T., Forsyth, K., Halperin, S.A., Heininger, U., Hozbor, D., Plotkin, S., Ulloa-Gutierrez, R., Von König, C.H.W.: Pertussis across the globe: recent epidemiologic trends from 2000 to 2013. Pediatr. Infect. Dis. J. 34(9), e222–e232 (2015)
The AnyLogic Company: AnyLogic software. https://www.anylogic.com
Tian, Y., Osgood, N.: 15 things system dynamics can learn from software development. In: Proceedings of the 2012 International Conference of the System Dynamics Society, p. 18pp. System Dynamics Society, St. Gallen, Switzerland (2012)
Ulam, S.M.: Some ideas and prospects in biomathematics. Ann. Rev. Biophys. Bioeng. 1(1), 277–292 (1972)
Weinstein, M.C., Russell, L.B., Gold, M.R., Siegel, J.E., et al.: Cost-Effectiveness in Health and Medicine. Oxford University Press, Oxford (1996)
Wiegers, K.E.: Peer Reviews in Software: A Practical Guide. Addison-Wesley Boston (2002)
World Health Organization: Pertussis (2019). https://www.who.int/immunization/diseases/pertussis/en/
Acknowledgements
The authors would like to acknowledge our collaborators on these works, Drs. Alexander Doroshenko, Karsten Hempel, Weicheng “Winchell” Qian, and Ellen Rafferty, as well as the Canadian Immunization Research Network (CIRN) and Mathematics for Public Health (MfPH). Co-author Osgood wishes to express his appreciation of support from NSERC via the Discovery Grants program (RGPIN 2017-04647) and from SYK & XZO.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
McDonald, G.W., Osgood, N.D. (2023). Agent-Based Modeling and Its Trade-Offs: An Introduction and Examples. In: David, J., Wu, J. (eds) Mathematics of Public Health. Fields Institute Communications, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-031-40805-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-40805-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40804-5
Online ISBN: 978-3-031-40805-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)