Skip to main content

Agent-Based Modeling and Its Trade-Offs: An Introduction and Examples

  • Chapter
  • First Online:
Mathematics of Public Health

Part of the book series: Fields Institute Communications ((FIC,volume 88))

Abstract

Agent-based modeling is a computational dynamic modeling technique that may be less familiar to some readers. Agent-based modeling seeks to understand the behavior of complex systems by situating agents in an environment and studying the emergent outcomes of agent-agent and agent-environment interactions. In comparison with compartmental models, agent-based models offer simpler, more scalable, and flexible representation of heterogeneity, the ability to capture dynamic and static network and spatial context, and the ability to consider history of individuals within the model. In contrast, compartmental models offer faster development time with less programming required, lower computational requirements that do not scale with population, and the option for concise mathematical formulation with ordinary, delay, or stochastic differential equations supporting derivation of properties of the system behavior.

In this chapter, basic characteristics of agent-based models are introduced; advantages and disadvantages of agent-based models, as compared with compartmental models, are discussed; and two example agent-based infectious disease models are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development methods: review and analysis (2017). arXiv preprint arXiv:1709.08439

    Google Scholar 

  2. Bankes, S.C.: Agent-based modeling: a revolution? Proc. Natl. Acad. Sci. 99(suppl 3), 7199–7200 (2002)

    Article  Google Scholar 

  3. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al.: Manifesto for agile software development (2001)

    Google Scholar 

  4. Bonanni, P., Gershon, A., Gershon, M., Kulcsár, A., Papaevangelou, V., Rentier, B., Sadzot-Delvaux, C., Usonis, V., Vesikari, T., Weil-Olivier, C., de Winter, P., Wutzler, P.: Primary versus secondary failure after varicella vaccination. Pediatr. Infect. Dis. J. 32(7), e305–e313 (2013)

    Article  Google Scholar 

  5. Brisson, M., Melkonyan, G., Drolet, M., Serres, G.D., Thibeault, R., Wals, P.D.: Modeling the impact of one- and two-dose varicella vaccination on the epidemiology of varicella and zoster. Vaccine 28(19), 3385–3397 (2010)

    Article  Google Scholar 

  6. Bronfenbrenner, U.: Toward an experimental ecology of human development. Am. Psychologist 32(7), 513 (1977)

    Article  Google Scholar 

  7. Bronfenbrenner, U.: Ecology of the family as a context for human development: research perspectives. Dev. Psychol. 22(6), 723 (1986)

    Article  Google Scholar 

  8. Bronfenbrenner, U.: Ecological Systems Theory. Jessica Kingsley Publishers (1992)

    Google Scholar 

  9. Campbell, A., Ismail, S., Tan, B.: Literature review on one-dose and two-dose varicella vaccination. Can. Communicable Dis. Rep. 36(ACS-10), 1–24 (2010). https://doi.org/10.14745/ccdr.v36i00a10

  10. Centers for Disease Control and Prevention: Pertussis frequently asked questions (2019). https://www.cdc.gov/pertussis/about/faqs.html

  11. Cohen, J.I.: Herpes zoster. N. Eng. J. Med. 369(3), 255–263 (2013). https://doi.org/10.1056/nejmcp1302674

    Article  Google Scholar 

  12. Duncan, J.R., Witkop, C.T., Webber, B.J., Costello, A.A.: Varicella seroepidemiology in united states air force recruits: a retrospective cohort study comparing immunogenicity of varicella vaccination and natural infection. Vaccine 35(18), 2351–2357 (2017)

    Article  Google Scholar 

  13. Gershon, A., Takahashi, M., Seward, J.: Varicella Vaccine, pp. 837–869. Elsevier Saunders, Philadelphia (2012)

    Google Scholar 

  14. Gold, L., Shiell, A., Hawe, P., Riley, T., Rankin, B., Smithers, P.: The costs of a community-based intervention to promote maternal health. Health Educ. Res. 22(5), 648–657 (2006). https://doi.org/10.1093/her/cyl127

    Article  Google Scholar 

  15. Government of Alberta: Interactive Health Data Application. http://www.ahw.gov.ab.ca/IHDA_Retrieval/

  16. Government of Alberta: Open government program (2019). https://open.alberta.ca/opendata

  17. Government of Canada: Pertussis (whooping cough) (2019). https://www.canada.ca/en/public-health/services/immunization/vaccine-preventable-diseases/pertussis-whooping-cough.html

  18. Hammond, R.A.: Peer reviewed: complex systems modeling for obesity research. Preventing Chron. Dis. 6(3) (2009)

    Google Scholar 

  19. Hawe, P., Shiell, A., Riley, T., Gold, L.: Methods for exploring implementation variation and local context within a cluster randomised community intervention trial. J. Epidemiol. Community Health 58(9), 788–793 (2004)

    Article  Google Scholar 

  20. Hempel, K., McDonald, W., Osgood, n.d., Fisman, D., Halperin, S.A., Crowcroft, N., Klein, N., Rohani, P., Doroshenko, A.: Evaluation of the effectiveness of maternal immunization against pertussis in Alberta using agent-based modeling: a Canadian Immunization Research Network study. Vaccine (Under review following resubmission for minor revisions)

    Google Scholar 

  21. Jeffries, R., Hendrickson, M.M., Anderson, A., Hendrickson, C.: Extreme programming installed. Addison-Wesley Professional (2001)

    Google Scholar 

  22. Kandeil, W., Savic, M., Ceregido, M.A., Guignard, A., Kuznetsova, A., Mukherjee, P.: Immune interference (blunting) in the context of maternal immunization with TDAP-containing vaccines: is it a class effect? Expert Rev. Vaccines 19(4), 341–352 (2020). https://doi.org/10.1080/14760584.2020.1749597

    Article  Google Scholar 

  23. Kreuger, L.K., Qian, W., Osgood, N., Choi, K.: Agile design meets hybrid models: Using modularity to enhance hybrid model design and use. In: 2016 Winter Simulation Conference (WSC), pp. 1428–1438. IEEE (2016). https://doi.org/10.1109/WSC.2016.7822195

  24. Kwong, J., Tanuseputro, P., Zagorski, B., Moineddin, R., Chan, K.: Impact of varicella vaccination on health care outcomes in Ontario, Canada: effect of a publicly funded program? Vaccine 26(47), 6006–6012 (2008)

    Article  Google Scholar 

  25. Liu, X.C., Bell, C.A., Simmonds, K.A., Svenson, L.W., Fathima, S., Drews, S.J., Schopflocher, D.P., Russell, M.L.: Epidemiology of pertussis in Alberta, Canada 2004–2015. BMC Public Health 17(1), 539 (2017)

    Article  Google Scholar 

  26. Macal, C.M., North, M.J.: Agent-based modeling and simulation. In: Proceedings of the 2009 Winter Simulation Conference (WSC), pp. 86–98. IEEE (2009)

    Google Scholar 

  27. McDonald, G.W., Bradford, L., Neapetung, M., Osgood, n.d., Strickert, G., Waldner, C.L., Belcher, K., McLeod, L., Bharadwaj, L.: Case study of collaborative modeling in an indigenous community. Water 14(17), 2601 (2022)

    Google Scholar 

  28. McDonnell, G.: Personal communication

    Google Scholar 

  29. Mejia Salazar, M.F., et al.: Social dynamics among mule deer and how they visit various environmental areas: implications for chronic wasting disease transmission. Ph.D. Thesis, University of Saskatchewan (2017)

    Google Scholar 

  30. Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso, S., Tomba, G.S., Wallinga, J., et al.: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5(3), e74 (2008)

    Article  Google Scholar 

  31. Neumann, J.v.: Theory of Self-Reproducing Automata. Edited by Arthur W. Burks (1966)

    Google Scholar 

  32. Ogunjimi, B., Damme, P.V., Beutels, P.: Herpes zoster risk reduction through exposure to chickenpox patients: A systematic multidisciplinary review. PLoS ONE 8(6), e66485 (2013). https://doi.org/10.1371/journal.pone.0066485

    Article  Google Scholar 

  33. Ogunjimi, B., Willem, L., Beutels, P., Hens, N.: Integrating between-host transmission and within-host immunity to analyze the impact of varicella vaccination on zoster. Elife 4, e07116 (2015)

    Article  Google Scholar 

  34. Osgood, N.: Representing heterogeneity in complex feedback system modeling: computational resource and error scaling. In: 22nd International Conference of the System Dynamics Society (2004)

    Google Scholar 

  35. Osgood, N.: Using traditional and agent based toolsets for system dynamics: present tradeoffs and future evolution. In: Proceedings of the 25th International Conference of the System Dynamics Society, p. 19pp. Boston (2007)

    Google Scholar 

  36. Osgood, N.: Representing progression and interactions of comorbidities in aggregate and individual-based systems models. In: Proceedings of the 27th International Conference of the System Dynamics Society. Albuquerque, New Mexico (2009)

    Google Scholar 

  37. Osgood, N., Liu, J.: Towards closed loop modeling: Evaluating the prospects for creating recurrently regrounded aggregate simulation models using particle filtering. In: Proceedings of the 2014 Winter Simulation Conference, WSC ’14, pp. 829–841. IEEE Press, Piscataway (2014)

    Google Scholar 

  38. Ouwens, M.J., Littlewood, K.J., Sauboin, C., Téhard, B., Denis, F., Boëlle, P.Y., Alain, S.: The impact of 2-dose routine measles, mumps, rubella, and varicella vaccination in France on the epidemiology of varicella and zoster using a dynamic model with an empirical contact matrix. Clin. Ther. 37(4), 816–829.e10 (2015)

    Google Scholar 

  39. Parunak, H.V.D., Savit, R., Riolo, R.L.: Agent-based modeling vs. equation-based modeling: a case study and users’ guide. In: Sichman, J.S., Conte, R., Gilbert, N. (eds.) Multi-Agent Systems and Agent-Based Simulation, vol. 1534, pp. 10–25. Springer, Berlin (1998). https://doi.org/10.1371/10.1007/10692956_2

    Chapter  Google Scholar 

  40. Rafferty, E., McDonald, W., Qian, W., Osgood, n.d., Doroshenko, A.: Evaluation of the effect of chickenpox vaccination on shingles epidemiology using agent-based modeling. PeerJ 6, e5012 (2018). https://doi.org/10.7717/peerj.5012

  41. Rafferty, E.R., McDonald, W., Osgood, n.d., Doroshenko, A., Farag, M.: What we know now: an economic evaluation of chickenpox vaccination and dose timing using an agent-based model. Value Health 24(1), 50–60 (2021). https://doi.org/10.1016/j.jval.2020.10.004

  42. Rafferty, E.R., McDonald, W., Osgood, n.d., Qian, W., Doroshenko, A.: Seeking the optimal schedule for chickenpox vaccination in Canada: using an agent-based model to explore the impact of dose timing, coverage and waning of immunity on disease outcomes. Vaccine 38(3), 521–529 (2020). https://doi.org/10.1016/j.vaccine.2019.10.065

  43. Rahmandad, H., Sterman, J.: Heterogeneity and network structure in the dynamics of diffusion: comparing agent-based and differential equation models. Manag. Sci. 54(5), 998–1014 (2008). https://doi.org/10.1371/10.1287/mnsc.1070.0787

    Article  Google Scholar 

  44. Railsback, S.F., Grimm, V.: Agent-Based and Individual-Based Modeling: A Practical Introduction. Princeton University Press, Princeton (2019)

    Google Scholar 

  45. Read, J.M., Keeling, M.J.: Disease evolution on networks: the role of contact structure. Proc. R. Soc. Lond. B: Biol. Sci. 270(1516), 699–708 (2003). https://doi.org/10.1098/rspb.2002.2305

    Article  Google Scholar 

  46. Richardson, G.P.: System Dynamics, pp. 807–810. Springer, New York (2001). https://doi.org/10.1007/1-4020-0611-X_1030

  47. Richardson, G.P.: Core of System Dynamics. System Dynamics: Theory and Applications pp. 11–20 (2020)

    Google Scholar 

  48. Safarishahrbijari, A., Teyhouee, A., Waldner, C., Liu, J., Osgood, n.d.: Predictive accuracy of part. filt. in dyn. models supporting outbreak proj. BMC Infect. Dis. 17(1), 1–12 (2017)

    Google Scholar 

  49. Smith, T., Rotondo, J., Desai, S., Deehan, H.: Pertussis: Pertussis surveillance in Canada: trends to 2012. Can. Communicable Dis. Rep. 40(3), 21 (2014)

    Article  Google Scholar 

  50. Statistics Canada: Data products, 2008 census (2008).https://www150.statcan.gc.ca/n1/en/pub/82-224-x/2005000/5802980-eng.pdf?st=H2WZgClh

  51. Statistics Canada: Data products, 2016 census (2016). https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-eng.cfm

  52. Sterman, J.: Business Dynamics : Systems Thinking and Modeling for a Complex World. Title Match 2003: Murray Matheson. Irwin/McGraw-Hill, Boston (2000)

    Google Scholar 

  53. Tan, T., Dalby, T., Forsyth, K., Halperin, S.A., Heininger, U., Hozbor, D., Plotkin, S., Ulloa-Gutierrez, R., Von König, C.H.W.: Pertussis across the globe: recent epidemiologic trends from 2000 to 2013. Pediatr. Infect. Dis. J. 34(9), e222–e232 (2015)

    Article  Google Scholar 

  54. The AnyLogic Company: AnyLogic software. https://www.anylogic.com

  55. Tian, Y., Osgood, N.: 15 things system dynamics can learn from software development. In: Proceedings of the 2012 International Conference of the System Dynamics Society, p. 18pp. System Dynamics Society, St. Gallen, Switzerland (2012)

    Google Scholar 

  56. Ulam, S.M.: Some ideas and prospects in biomathematics. Ann. Rev. Biophys. Bioeng. 1(1), 277–292 (1972)

    Article  MathSciNet  Google Scholar 

  57. Weinstein, M.C., Russell, L.B., Gold, M.R., Siegel, J.E., et al.: Cost-Effectiveness in Health and Medicine. Oxford University Press, Oxford (1996)

    Google Scholar 

  58. Wiegers, K.E.: Peer Reviews in Software: A Practical Guide. Addison-Wesley Boston (2002)

    Google Scholar 

  59. World Health Organization: Pertussis (2019). https://www.who.int/immunization/diseases/pertussis/en/

Download references

Acknowledgements

The authors would like to acknowledge our collaborators on these works, Drs. Alexander Doroshenko, Karsten Hempel, Weicheng “Winchell” Qian, and Ellen Rafferty, as well as the Canadian Immunization Research Network (CIRN) and Mathematics for Public Health (MfPH). Co-author Osgood wishes to express his appreciation of support from NSERC via the Discovery Grants program (RGPIN 2017-04647) and from SYK & XZO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wade McDonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McDonald, G.W., Osgood, N.D. (2023). Agent-Based Modeling and Its Trade-Offs: An Introduction and Examples. In: David, J., Wu, J. (eds) Mathematics of Public Health. Fields Institute Communications, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-031-40805-2_9

Download citation

Publish with us

Policies and ethics