Skip to main content

Contact Matrices in Compartmental Disease Transmission Models

  • Chapter
  • First Online:
Mathematics of Public Health

Part of the book series: Fields Institute Communications ((FIC,volume 88))

  • 200 Accesses

Abstract

Compartmental disease transmission models often stratify populations by factors such as risk, age, and geography. In such models, average rates of contact between each combination of population strata can be summarized as contact matrices. These matrices are key determinants of epidemic dynamics and intervention impact. In this chapter, we review the definition and application of contact matrices in compartmental transmission models. We explore different types of contacts and sources of data to support them, summarize key properties of contact matrices, examine the problem of restratifying contact matrices, and develop a method to incorporate age-stratified contact data and geographic mobility data. Throughout the chapter, we illustrate the concepts and methods discussed using a motivating example of developing contact matrices for SARS-CoV-2 transmission modelling. Overall, the chapter aims to be a practical introduction to contact matrices that will support the reader to construct and apply contact matrices in their own work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 08 February 2024

    A correction has been published.

Notes

  1. 1.

    Equation (4.1) assumes “frequency-dependent” transmission, which does not scale with population density; an alternate assumption is called “density-dependent” transmission, which replaces the population size N with an area A in (4.1), and changes the interpretation of C [5]. We assume frequency-dependent transmission throughout this chapter, because the survey-derived contact data used to inform C (see Sect. 4.2) are taken as fixed, as opposed to scaling with population density \(N/A\).

  2. 2.

    The distinction between aerosols and droplets falls along a spectrum but is mainly defined by the ability of aerosols to, unlike droplets, remain suspended in the air for several seconds or more.

  3. 3.

    github.com/kieshaprem/synthetic-contact-matrices.

  4. 4.

    The intrinsic connectivity matrix \(\Gamma \) serves a similar role to the log-odds matrix \(\theta \) from Sect. 4.3.3, but the two matrices are not the same.

References

  1. Adu, P.A., Binka, M., Mahmood, B., Jeong, D., Buller-Taylor, T., Damascene, M.J., Iyaniwura, S., Ringa, N., García, H.A.V., Wong, S., Yu, A., Bartlett, S., Wilton, J., Irvine, M.A., Otterstatter, M., Janjua, N.Z., Naveed, D., Janjua, Z.: Cohort profile: the British Columbia COVID-19 Population Mixing Patterns Survey (BC-Mix). BMJ Open 12(8), e056615 (2022). https://doi.org/10.1136/BMJOPEN-2021-056615

    Article  Google Scholar 

  2. Arenas, A., Cota, W., Gómez-Gardeñes, J., Gómez, S., Granell, C., Matamalas, J.T., Soriano-Paños, D., Steinegger, B.: Modeling the spatiotemporal epidemic spreading of COVID-19 and the impact of mobility and social distancing interventions. Phys. Rev. X 10(4), 041055 (2020). https://doi.org/10.1103/PhysRevX.10.041055. http://www.doi.org/10.1103/PhysRevX.10.041055

  3. Arregui, S., Aleta, A., Sanz, J., Moreno, Y.: Projecting social contact matrices to different demographic structures. PLoS Comput. Biol. 14(12), e1006638 (2018). https://doi.org/10.1371/journal.pcbi.1006638

    Article  Google Scholar 

  4. Baral, S., Beyrer, C., Muessig, K., Poteat, T., Wirtz, A.L., Decker, M.R., Sherman, S.G., Kerrigan, D.: Burden of HIV among female sex workers in low-income and middle-income countries: A systematic review and meta-analysis. Lancet Infect. Dis. 12(7), 538—-549 (2012). https://doi.org/10.1016/S1473-3099(12)70066-X

    Article  Google Scholar 

  5. Begon, M., Bennett, M., Bowers, R.G., French, N.P., Hazel, S.M., Turner, J.: A clarification of transmission terms in host-microparasite models: Numbers, densities and areas. Epidemiol. Infect. 129(1), 147–153 (2002). https://doi.org/10.1017/S0950268802007148

    Article  Google Scholar 

  6. Béhanzin, L., Diabaté, S., Minani, I., Lowndes, C.M., Boily, M.C., Labbé, A.C., Anagonou, S., Zannou, D.M., Buvé, A., Alary, M.: Assessment of HIV-related risky behaviour: A comparative study of face-to-face interviews and polling booth surveys in the general population of Cotonou, Benin. Sex. Transm. Infect. 89(7), 595–601 (2013). https://doi.org/10.1136/sextrans-2012-050884

    Article  Google Scholar 

  7. Beyrer, C., Baral, S.D., Van Griensven, F., Goodreau, S.M., Chariyalertsak, S., Wirtz, A.L., Brookmeyer, R.: Global epidemiology of HIV infection in men who have sex with men. Lancet 380(9839), 367–377 (2012). https://doi.org/10.1016/S0140-6736(12)60821-6

    Article  Google Scholar 

  8. Brankston, G., Merkley, E., Fisman, D.N., Tuite, A.R., Poljak, Z., Loewen, P.J., Greer, A.L.: Quantifying contact patterns in response to COVID-19 public health measures in Canada. BMC Public Health 21(1) (2021). https://doi.org/10.1186/s12889-021-12080-1

  9. Brisson, M., Drolet, M., Mondor, M., Godbout, A., Gingras, G., Demers, É.: CONNECT: étude des contacts sociaux des Québécois (2021). https://www.inspq.qc.ca/covid-19/donnees/connect/21-juillet-2021

  10. Garnett, G.P., Anderson, R.M.: Sexually transmitted diseases and sexual behavior: Insights from mathematical models. J. Infect. Dis. 174(SUPPL. 2), S150–S161 (1996). https://doi.org/10.1093/infdis/174.supplement_2.s150

    Article  Google Scholar 

  11. Ghasemi, A., Daneman, N., Berry, I., Buchan, S.A., Soucy, J.P., Sturrock, S., Brown, K.A.: Impact of a nighttime curfew on overnight mobility. medRxiv p. 2021.04.04.21254906 (2021). https://doi.org/10.1101/2021.04.04.21254906

  12. Granell, C., Mucha, P.J.: Epidemic spreading in localized environments with recurrent mobility patterns. Phys. Rev. E 97(5), 052302 (2018). https://doi.org/10.1103/PhysRevE.97.052302

    Article  Google Scholar 

  13. Hu, T., Wang, S., She, B., Zhang, M., Huang, X., Cui, Y., Khuri, J., Hu, Y., Fu, X., Wang, X., Wang, P., Zhu, X., Bao, S., Guan, W., Li, Z.: Human mobility data in the COVID-19 pandemic: characteristics, applications, and challenges. Int. J. Digital Earth 14(9), 1126–1147 (2021). https://doi.org/10.1080/17538947.2021.1952324

    Article  Google Scholar 

  14. Johnstone-Robertson, S.P., Mark, D., Morrow, C., Middelkoop, K., Chiswell, M., Aquino, L.D., Bekker, L.G., Wood, R.: Social mixing patterns within a South African township community: Implications for respiratory disease transmission and control. Am. J. Epidemiol. 174(11), 1246–1255 (2011). https://doi.org/10.1093/aje/kwr251

    Article  Google Scholar 

  15. Kleynhans, J., Tempia, S., McMorrow, M.L., von Gottberg, A., Martinson, N.A., Kahn, K., Moyes, J., Mkhencele, T., Lebina, L., Gómez-Olivé, F.X., Wafawanaka, F., Mathunjwa, A., Cohen, C., Buys, A., Mathee, A., Language, B., Maake, L., Treurnicht, F., Mothlaoleng, K., Carrim, M., Wolter, N., Hellferscee, O., Wagner, R.G., Piketh, S.: A cross-sectional study measuring contact patterns using diaries in an urban and a rural community in South Africa, 2018. BMC Public Health 21(1), 1–10 (2021). https://doi.org/10.1186/s12889-021-11136-6

  16. Knight, J., Ma, H., Ghasemi, A., Hamilton, M., Brown, K., Mishra, S.: Adaptive data-driven age and patch mixing in contact networks with recurrent mobility. MethodsX 9, 101614 (2022). https://doi.org/10.1016/j.mex.2021.101614

    Article  Google Scholar 

  17. Mishra, S., Stall, N.M., Ma, H., Odutayo, A., Kwong, J.C., Allen, U., Brown, K.A., Bogoch, I.I., Erman, A., Huynh, T., Ikura, S., Maltsev, A., McGeer, A., Moloney, G., Morris, A.M., Schull, M., Siddiqi, A., Smylie, J., Watts, T., Yiu, K., Sander, B., Jüni, P.: A vaccination strategy for Ontario COVID-19 hotspots and essential workers. Science Briefs of the Ontario COVID-19 Science Advisory Table, vol. 2(26) (2021). https://doi.org/10.47326/ocsat.2021.02.26.1.0

  18. Morris, M.: A log-linear modeling framework for selective mixing. Math. Biosci. 107(2), 349–77 (1991). https://doi.org/10.1016/0025-5564(91)90014-a

    Article  Google Scholar 

  19. Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso, S., Tomba, G.S., Wallinga, J., Heijne, J., Sadkowska-Todys, M., Rosinska, M., Edmunds, W.J.: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5(3), 0381–0391 (2008). https://doi.org/10.1371/journal.pmed.0050074

    Article  Google Scholar 

  20. Nold, A.: Heterogeneity in disease-transmission modeling. Math. Biosci. 52(3-4), 227–240 (1980). https://doi.org/10.1016/0025-5564(80)90069-3

    Article  MathSciNet  Google Scholar 

  21. Nyquist, H.: Certain topics in telegraph transmission theory. Trans. Am. Instit. Elect. Eng. 47(2), 617–644 (1928). https://doi.org/10.1109/T-AIEE.1928.5055024

    Article  Google Scholar 

  22. Prem, K., Cook, A.R., Jit, M.: Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput. Biol. 13(9), e1005697 (2017). https://doi.org/10.1371/journal.pcbi.1005697

    Article  Google Scholar 

  23. Prem, K., van Zandvoort, K., Klepac, P., Eggo, R.M., Davies, N.G., Cook, A.R., Jit, M.: Projecting contact matrices in 177 geographical regions: An update and comparison with empirical data for the COVID-19 era. PLOS Comput. Biol. 17(7) (2021). https://doi.org/10.1371/journal.pcbi.1009098

  24. Ruschendorf, L.: Convergence of the iterative proportional fitting procedure. Ann. Stat. 23(4), 1160–1174 (1995). https://doi.org/10.1214/aos/1176324703

    Article  MathSciNet  Google Scholar 

  25. Simini, F., González, M.C., Maritan, A., Barabási, A.L.: A universal model for mobility and migration patterns. Nature 484(7392), 96–100 (2012). https://doi.org/10.1038/nature10856

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC CGS-D); the Canadian Institutes of Health Research (VR5-172683); and the 2020 COVID-19 Centred Research Award from the St Michael’s Hospital Foundation Research Innovation Council.

From Unity Health Toronto, we thank Mackenzie Hamilton for helpful discussions and support in conceptualizing the chapter; Linwei Wang, Korryn Bodner, and Huiting Ma for helpful discussions; Kristy Yiu for research coordination support; and Gary Moloney for support with geographic data processing.

The data and R code used for the motivating example are available at

github.com/mishra-lab/age-patch-mobility-mixing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Knight .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Knight, J., Mishra, S. (2023). Contact Matrices in Compartmental Disease Transmission Models. In: David, J., Wu, J. (eds) Mathematics of Public Health. Fields Institute Communications, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-031-40805-2_4

Download citation

Publish with us

Policies and ethics