Skip to main content

Long-Term Dynamics of COVID-19 in a Multi-strain Model

  • Chapter
  • First Online:
Mathematics of Public Health

Part of the book series: Fields Institute Communications ((FIC,volume 88))

  • 188 Accesses

Abstract

The continuous emergence and spread of new variants of SARS-CoV-2 has added an extra layer of complexity in the effort to effectively control the pandemic. The long-term impact of the new variants, and how they will interplay with population immunity and other factors to shape future resurgence of infection, is not fully understood. To provide some insight on this, we simulate future SARS-CoV-2 variants assuming Poisson process arrival times in British Columbia, Canada, sampling their transmissibility and immune escape capacity from a multivariate log-normal distribution. Using a two-strain deterministic model that incorporates waning of immunity and breakthrough infection, we explore the long-term dynamics of COVID-19 in British Columbia. Our model predicts multiple waves of resurgence of SARS-CoV-2 infection modulated by transmissibility, immune escape capacity and variants’ arrival rates, without achieving stable endemicity within the next 3 years. The peak and rate of resurgence of infection waves can be reduced by continuous boosting of immunity with efficacious vaccines, while proactive measures are employed to encourage booster uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Are, E.B., Song, Y., Stockdale, J.E., Tupper, P., Colijn, C.: Covid-19 endgame: from pandemic to endemic? Vaccination, reopening and evolution in a well-vaccinated population (2021). medRxiv

    Google Scholar 

  2. Badr, H.S., Du, H., Marshall, M., Dong, E., Squire, M.M., Gardner, L.M.: Association between mobility patterns and covid-19 transmission in the USA: a mathematical modelling study. Lancet Infect. Dis. 20(11), 1247–1254 (2020)

    Article  Google Scholar 

  3. Baker, R.E., Park, S.W., Yang, W., Vecchi, G.A., Metcalf, C.J.E., Grenfell, B.T.: The impact of covid-19 nonpharmaceutical interventions on the future dynamics of endemic infections. Proc. Natl. Acad. Sci. 117(48), 30547–30553 (2020)

    Article  Google Scholar 

  4. Barker, P., Hartley, D., Beck, A.F., Oliver, G.H., Sampath, B., Roderick, T., Miff, S.: Rethinking herd immunity: managing the covid-19 pandemic in a dynamic biological and behavioral environment. NEJM Catal. Innovations Care Delivery 2(5) (2021)

    Google Scholar 

  5. Bocean, C.G., Puiu, S., Vărzaru, A.A.: Paradigm shifting–the use of mobile communications at work and the subsequent effects. Electronics 10(22), 2747 (2021)

    Article  Google Scholar 

  6. British Columbia Center for Diseases Control (BCCDC) and Provincial Health Service Authority (PHSA) covid-19 dashboard (2022). https://experience.arcgis.com/experience/a6f23959a8b14bfa989e3cda29297ded

  7. Cheung, C., Lyons, J., Madsen, B., Miller, S., Sheikh, S.: The bank of Canada covid-19 stringency index: measuring policy response across provinces. Tech. rep., Bank of Canada (2021)

    Google Scholar 

  8. Cole, S.R., Chu, H., Greenland, S.: Maximum likelihood, profile likelihood, and penalized likelihood: a primer. Am. J. Epidemiol. 179(2), 252–260 (2014)

    Article  Google Scholar 

  9. Day, T., Gandon, S., Lion, S., Otto, S.P.: On the evolutionary epidemiology of SARS-CoV-2. Curr. Biol. 30(15), R849–R857 (2020)

    Article  Google Scholar 

  10. Dyson, L., Hill, E.M., Moore, S., Curran-Sebastian, J., Tildesley, M.J., Lythgoe, K.A., House, T., Pellis, L., Keeling, M.J.: Possible future waves of SARS-CoV-2 infection generated by variants of concern with a range of characteristics. Nat. Commun. 12(1), 1–13 (2021)

    Article  Google Scholar 

  11. Earnest, R., Uddin, R., Matluk, N., Renzette, N., Turbett, S.E., Siddle, K.J., Loreth, C., Adams, G., Tomkins-Tinch, C.H., Petrone, M.E., et al.: Comparative transmissibility of SARS-CoV-2 variants delta and alpha in new England, Usa. Cell Rep. Med. 3(4), 100583 (2022)

    Article  Google Scholar 

  12. Endo, A., Abbott, S., Kucharski, A.J., Funk, S., et al.: Estimating the overdispersion in covid-19 transmission using outbreak sizes outside China. Wellcome Open Res. 5 (2020)

    Google Scholar 

  13. Fisman, D.N., Tuite, A.R.: Evaluation of the relative virulence of novel SARS-CoV-2 variants: a retrospective cohort study in Ontario, Canada. CMAJ 193(42), E1619–E1625 (2021)

    Article  Google Scholar 

  14. Götz, T., Bock, W., Rockenfeller, R., Schäfer, M.: A two-strain SARS-CoV-2 model for Germany—evidence from a linearization (2021). arXiv preprint arXiv:2102.11333

    Google Scholar 

  15. Hastie, C.E., Lowe, D.J., McAuley, A., Winter, A.J., Mills, N.L., Black, C., Scott, J.T., O’Donnell, C.A., Blane, D.N., Browne, S., Ibbotson, T.R., Pell, J.P.: Outcomes among confirmed cases and a matched comparison group in the Long-COVID in Scotland study. Nat. Commun. 13(1), 5663 (2022)

    Article  Google Scholar 

  16. Hay, J.A., Kissler, S.M., Fauver, J.R., Mack, C., Tai, C.G., Samant, R.M., Connelly, S., Anderson, D.J., Khullar, G., MacKay, M., et al.: Viral dynamics and duration of PCR positivity of the SARS-CoV-2 omicron variant (2022). MedRxiv

    Google Scholar 

  17. He, D., Artzy-Randrup, Y., Musa, S.S., Gräf, T., Naveca, F., Stone, L.: The unexpected dynamics of covid-19 in Manaus, Brazil: was herd immunity achieved? MedRxiv (2021)

    Google Scholar 

  18. Huang, D., Tao, H., Wu, Q., Huang, S.Y., Xiao, Y.: Modeling of the long-term epidemic dynamics of covid-19 in the united states. Int. J. Environ. Res. Public Health 18(14), 7594 (2021)

    Article  Google Scholar 

  19. Kamiya, T., Alvarez-Iglesias, A., Ferguson, J., Murphy, S., Sofonea, M.T., Fitz-Simon, N.: Estimating time-dependent infectious contact: a multi-strain epidemiological model of SARS-CoV-2 on the island of Ireland (2022). medRxiv

    Google Scholar 

  20. Kompaniyets, L., Bull-Otterson, L., Boehmer, T.K., Baca, S., Alvarez, P., Hong, K., Hsu, J., Harris, A.M., Gundlapalli, A.V., Saydah, S.: Post-COVID-19 Symptoms and conditions among children and adolescents—United States, March 1, 2020-January 31, 2022. MMWR Morb. Mortal. Wkly. Rep. 71(31), 993–999 (2022)

    Article  Google Scholar 

  21. Kucharski, A.J., Russell, T.W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R.M., Sun, F., Jit, M., Munday, J.D., et al.: Early dynamics of transmission and control of covid-19: a mathematical modelling study. Lancet Infect. Dis. 20(5), 553–558 (2020)

    Article  Google Scholar 

  22. Ledford, H., et al.: How severe are omicron infections. Nature 600(7890), 577–578 (2021)

    Article  Google Scholar 

  23. Lima, C.M.A.d.O.: Information about the new coronavirus disease (covid-19) (2020)

    Google Scholar 

  24. Lin, D.Y., Gu, Y., Xu, Y., Wheeler, B., Young, H., Sunny, S.K., Moore, Z., Zeng, D.: Association of primary and booster vaccination and prior infection with SARS-CoV-2 infection and severe covid-19 outcomes. JAMA 328(14), 1415–1426 (2022)

    Article  Google Scholar 

  25. Lipsitch, M., Dean, N.E.: Understanding covid-19 vaccine efficacy. Science 370(6518), 763–765 (2020)

    Article  Google Scholar 

  26. Liu, J., Liu, Y., Xia, H., Zou, J., Weaver, S.C., Swanson, K.A., Cai, H., Cutler, M., Cooper, D., Muik, A., et al.: Bnt162b2-elicited neutralization of b. 1.617 and other SARS-CoV-2 variants. Nature 596(7871), 273–275 (2021)

    Google Scholar 

  27. Lyngse, F.P., Kirkeby, C.T., Denwood, M., Christiansen, L.E., Mølbak, K., Møller, C.H., Skov, R.L., Krause, T.G., Rasmussen, M., Sieber, R.N., et al.: Transmission of SARS-CoV-2 omicron voc subvariants ba. 1 and ba. 2: evidence from Danish households (2022). MedRxiv

    Google Scholar 

  28. Mahase, E.: Delta variant: What is happening with transmission, hospital admissions, and restrictions? (2021)

    Google Scholar 

  29. Mazzuco, S., Campostrini, S.: Life expectancy drop in 2020. estimates based on human mortality database. PLoS One 17(1), e0262846 (2022)

    Google Scholar 

  30. Mohsin, M., Mahmud, S.: Omicron SARS-CoV-2 variant of concern: A review on its transmissibility, immune evasion, reinfection, and severity. Medicine 101(19), e29165 (2022)

    Article  Google Scholar 

  31. Otto, S.P., Day, T., Arino, J., Colijn, C., Dushoff, J., Li, M., Mechai, S., Van Domselaar, G., Wu, J., Earn, D.J.D., Ogden, N.H.: The origins and potential future of SARS-CoV-2 variants of concern in the evolving COVID-19 pandemic. Curr. Biol. (2021)

    Google Scholar 

  32. Park, K., Choi, S.J., Shin, E.C.: Omicron subvariants, including ba. 4 and ba. 5, substantially preserve t cell epitopes of ancestral SARS-CoV-2. Immune Netw. 31(14), R918–R929 (2021)

    Google Scholar 

  33. Parker, M.R., Li, Y., Elliott, L.T., Ma, J., Cowen, L.L.: Under-reporting of covid-19 in the northern health authority region of British Columbia. Can. J. Stat. 49(4), 1018–1038 (2021)

    Article  MathSciNet  Google Scholar 

  34. Phetsouphanh, C., Darley, D.R., Wilson, D.B., Howe, A., Munier, C.M.L., Patel, S.K., Juno, J.A., Burrell, L.M., Kent, S.J., Dore, G.J., Kelleher, A.D., Matthews, G.V.: Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 23(2), 210–216 (2022)

    Article  Google Scholar 

  35. Port, J., Yinda, C.K., Avanzato, V., Schulz, J., Holbrook, M., van Doremalen, N., Shaia, C., Fischer, R., Munster, V.: Increased aerosol transmission for b. 1.1. 7 (alpha variant) over lineage a variant of SARS-CoV-2. Research Square (2021)

    Google Scholar 

  36. Pulliam, J.R., van Schalkwyk, C., Govender, N., von Gottberg, A., Cohen, C., Groome, M.J., Dushoff, J., Mlisana, K., Moultrie, H.: Increased risk of SARS-CoV-2 reinfection associated with emergence of omicron in South Africa. Science 376(6593), eabn4947 (2022)

    Google Scholar 

  37. Raisi-Estabragh, Z., Cooper, J., Salih, A., Raman, B., Lee, A.M., Neubauer, S., Harvey, N.C., Petersen, S.E.: Cardiovascular disease and mortality sequelae of COVID-19 in the UK Biobank. Heart (2022)

    Google Scholar 

  38. Sigal, A., Milo, R., Jassat, W.: Estimating disease severity of omicron and delta SARS-CoV-2 infections. Nat. Rev. Immunol. 22(5), 267–269 (2022)

    Article  Google Scholar 

  39. Su, Z., Cheshmehzangi, A., McDonnell, D., da Veiga, C.P., Xiang, Y.T.: Mind the “vaccine fatigue”. Front. Immunol. 13, 839433 (2022)

    Article  Google Scholar 

  40. Sun, J., Chen, X., Zhang, Z., Lai, S., Zhao, B., Liu, H., Wang, S., Huan, W., Zhao, R., Ng, M.T.A., et al.: Forecasting the long-term trend of covid-19 epidemic using a dynamic model. Sci. Rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  41. Tan, W., Wong, L., Leo, Y., Toh, M.: Does incubation period of covid-19 vary with age? A study of epidemiologically linked cases in Singapore. Epidemiol. Infect. 148, e197 (2020)

    Article  Google Scholar 

  42. Tuite, A.R., Fisman, D.N., Greer, A.L.: Mathematical modelling of covid-19 transmission and mitigation strategies in the population of Ontario, Canada. CMAJ 192(19), E497–E505 (2020)

    Article  Google Scholar 

  43. Xia, S., Wang, L., Zhu, Y., Lu, L., Jiang, S.: Origin, virological features, immune evasion and intervention of SARS-CoV-2 omicron sublineages. Signal Transduction Targeted Ther. 7(1), 1–7 (2022)

    Article  Google Scholar 

  44. Zuo, C., Meng, Z., Zhu, F., Zheng, Y., Ling, Y.: Assessing vaccination prioritization strategies for covid-19 in South Africa based on age-specific compartment model. Front. Public Health 10, 876551 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisha B. Are .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Are, E.B., Stockdale, J., Colijn, C. (2023). Long-Term Dynamics of COVID-19 in a Multi-strain Model. In: David, J., Wu, J. (eds) Mathematics of Public Health. Fields Institute Communications, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-031-40805-2_11

Download citation

Publish with us

Policies and ethics