Skip to main content

Automatic Forest Road Extraction from LiDAR Data Using Convolutional Neural Networks

  • 14 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 14068)

Abstract

Accurate location of access roads is important for forest management, in particular in mountain areas. In this paper, we are interested in their detection from LiDAR data using deep learning approaches. For this, we use images computed from an interpolated surface, called digital terrain model (DTM), of the 3D point cloud. In order to train and validate the neural network models, two ground truth datasets associated to DTM images are considered: (1) manual digitization of the road centerlines and (2) automatic extraction followed by supervised completion using two softwares based on discrete geometry tools. The trained network models are then evaluated over a test dataset using standard measures such as precision, recall, F-measure and prediction time.

Keywords

  • Road detection
  • mountainous area
  • LiDAR images
  • CNN

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Clode, S., Rottensteiner, F., Kootsookos, P., Zelnicker, E.: Detection and vectorization of roads from lidar data. Photogramm. Eng. Remote Sens. 73(5), 517–536 (2007). https://doi.org/10.14358/PERS.73.5.517

  2. David, N., Mallet, C., Pons, T., Chauve, A., Bretar, F.: Pathway detection and geometrical description from ALS data in forested montaneous areas. Int. Archives Photogramm., Remote Sens. Spatial Inform. Sci. 38(part 3/W8), 242–247 (2009)

    Google Scholar 

  3. Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Comput. Graph. 30(1), 30–36 (2006). https://doi.org/10.1016/j.cag.2005.10.007

  4. Even, P., Grzesznik, A., Gebhardt, A., Chenal, T., Even, P., Ngo, P.: Interactive extraction of linear structures from LiDAR raw data for archaeomorphological structure prospection. Int. Archives Photogramm., Remote Sensing Spatial Inform. Sci. XLIII-B2-2021, pp. 153–161 (2021). https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-153-2021

  5. Even, P., Ngo, P.: AMREL: Automatic mountain road extraction from LiDAR data. https://github.com/evenp/AMREL.git/ (2022)

  6. Even, P., Ngo, P.: ILSD: Interactive linear structure detector. https://github.com/evenp/ILSD.git/ (2022)

  7. Even, P., Ngo, P.: Live extraction of curvilinear structures from LiDAR raw data. ISPRS Ann. Photogramm. Remote Sensing Spatial Inform. Sci. 2 211–219 (2020). https://doi.org/10.5194/isprs-annals-V-2-2020-211-2020

  8. Even, P., Ngo, P.: Automatic forest road extraction from lidar data of mountainous areas. In: First Joint Conference on Discrete Geometry and Mathematical Morphology, pp. 93–106 (2021). https://doi.org/10.1007/978-3-030-76657-3_6

  9. Even, P., Ngo, P., Kerautret, B.: Thick line segment detection with fast directional tracking. In: Proceedings of 20th International Conference on Image Analysis and Processing, pp. 159–170 (2019). https://doi.org/10.1007/978-3-030-30645-8_15

  10. Ferraz, A., Mallet, C., Chehata, N.: Large-scale road detection in forested montainous areas using airborne topographic lidar data. ISPSR J. Photogramm. Remote Sensing 112, 23–36 (2016). https://doi.org/10.1016/j.isprsjprs.2015.12.002

    CrossRef  Google Scholar 

  11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

    Google Scholar 

  12. Hui, Z., Hu, Y., Jin, S., Yevenyo, Y.Z.: Road centerline extraction from airborne LiDAR point cloud based on hierarchical fusion and optimization. ISPRS J. Photogramm. Remote. Sens. 118, 22–36 (2016). https://doi.org/10.1016/j.isprsjprs.2016.04.003

    CrossRef  Google Scholar 

  13. IGN: LIDAR HD - Une cartographie 3D du sol et du sursol de la France. https://geoservices.ign.fr/lidarhd/ (2022)

  14. Keras: Python interface for artificial neural networks. https://keras.io/ (2022)

  15. Kraemer, C., et al.: ArchéoGÉographie du premier Remiremont et de ses abords : le Saint-Mont et le massif du Fossard. Rapport de Projet AGER 1, Université de Lorraine (2018)

    Google Scholar 

  16. Liu, Q., Kampffmeyer, M., Jenssen, R., Salberg, A.B.: Road mapping in LiDAR images using a joint-task dense dilated convolutions merging network. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 5041–5044 (2019). https://doi.org/10.1109/IGARSS.2019.8900082

  17. Liu, Q., Kampffmeyer, M., Jenssen, R., Salberg, A.B.: Dense dilated convolutions’ merging network for land cover classification. IEEE Trans. Geosci. Remote Sens. 58(9), 6309–6320 (2020). https://doi.org/10.1109/TGRS.2020.2976658

    CrossRef  Google Scholar 

  18. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations (2019). https://doi.org/10.48550/arXiv.1711.05101

  19. Merveille, O., Naegel, B., Talbot, H., Najman, L., Passat, N.: 2D filtering of curvilinear structures by ranking the orientation responses of path operators (RORPO). Image Processing On Line 7, 246–261 (2017). https://doi.org/10.5201/ipol.2017.207

    CrossRef  MathSciNet  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: 18\(^{th}\) International Conference on Medical Image Computing and Computer-Assisted Interventions, pp. 234–241 (10 2015). https://doi.org/10.1007/978-3-319-24574-4_28

  21. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    CrossRef  MathSciNet  Google Scholar 

  22. Salberg, A.B., Trier, Ø.D., Kampffmeyer, M.: Large-scale mapping of small roads in lidar images using deep convolutional neural networks. In: Scandinavian Conference on Image Analysis, pp. 193–204 (2017). https://doi.org/10.1007/978-3-319-59129-2_17

  23. TensorFlow: Software library for machine learning and artificial intelligence. https://www.tensorflow.org/ (2022)

  24. White, R.A., Dietterick, B.C., Mastin, T., Strohman, R.: Forest roads mapped using LiDAR in steep forested terrain. Remote Sensing 2(4), 1120–1141 (2010). https://doi.org/10.3390/rs2041120

    CrossRef  Google Scholar 

  25. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision, pp. 3–19 (2018). https://doi.org/10.1007/978-3-030-01234-2_1

  26. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: International Conference on Learning Representations (2016). https://doi.org/10.48550/arXiv.1511.07122

  27. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984). https://doi.org/10.1145/357994.358023

    CrossRef  Google Scholar 

Download references

Acknowledgements

DTM images are derived from Fossard LiDAR data acquired in scope of the PCR AGER project (Projet collectif de recherche ”Archéologie et GEoarchéologie du premier Remiremont et de ses abords”), dir. Charles Kraemer, HISCANT Laboratory, Université de Lorraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Ngo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Georges, P., Ngo, P., Even, P. (2023). Automatic Forest Road Extraction from LiDAR Data Using Convolutional Neural Networks. In: Kerautret, B., Colom, M., Krähenbühl, A., Lopresti, D., Monasse, P., Perret, B. (eds) Reproducible Research in Pattern Recognition. RRPR 2022. Lecture Notes in Computer Science, vol 14068. Springer, Cham. https://doi.org/10.1007/978-3-031-40773-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40773-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40772-7

  • Online ISBN: 978-3-031-40773-4

  • eBook Packages: Computer ScienceComputer Science (R0)