Skip to main content

Visual Statistics of the Total Geomagnetic Field Power

  • Conference paper
  • First Online:
Problems of Geocosmos—2022 (ICS 2022)

Abstract

We carried out exploratory statistical and probabilistic analyzes of power P = dE/dt of the observable potential geomagnetic field, where E is the total energy of the field. The field are taken from the geomagnetic model COV-OBS. ×1 1840–2020. The power is predominantly negative and takes values from −507 to +117 MW. Despite the extreme variability of the power P, its absolute value is three to four orders of magnitude smaller than the power required to maintain the geodynamo. The distribution function or, in other words, power spectrum is multimodal and its most significant almost flat part is in the range from −200 to −50 MW corresponding to the almost discrete spectrum of the energy. These main features and other statistical-probabilistic results are consistent with geomagnetic and geodynamo models, both in terms of the variability of the dipole field and of corresponding characteristic time scales, which are mostly of the order of a thousand years. We highlight a significant separate probabilistic mode with a power of about 500 MW, which may be associated with field variations with the duration of ~500 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mauersberger, P.: Das Mittel der Energiedichte des geomagnetischen Hauptfeldes an der Erdoberflache und seine sakulare Anderung. Gerlands Beitr. Geophys. 65, 207–215 (1956).

    Google Scholar 

  2. Lowes, F.J.: Spatial power spectrum of the main geomagnetic field, and extrapolation to the core. Geophys. J. R. Astr. Soc. 36, 717–730 (1974).

    Google Scholar 

  3. Starchenko, S.V., Yakovleva, S.V.: Energy and power spectra of the potential geomagnetic field since 1840. Geomagn. Aeron. 59(2), 242–248 (2019).

    Google Scholar 

  4. Starchenko, S.V., Yakovleva S.V.: Two century evolution and statistics of times of variations in the energy of the potential geomagnetic field. Geomagn. Aeron. 61(5), 661–671 (2021).

    Google Scholar 

  5. Thébault, E., Finlay C.C., Beggan C.D. et al.: International Geomagnetic Reference Field: the 12th generation. Earth, Planets and Space 67, 79–98 (2015).

    Google Scholar 

  6. Jackson, A., Jonkers A.R.T., Walker M.R.: Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. Lond. A358, 957–990 (2000).

    Google Scholar 

  7. Gillet, N., Jault, D., Finlay, C.C., Olsen, N.: Stochastic modeling of the Earth’s magnetic field: inversion for covariances over the observatory era. Geochem. Geophys. Geosyst. 14(4), 766–786 (2013).

    Google Scholar 

  8. Gillet, N., Barrois, O., Finlay, C.C.: Stochastic forecasting of the geomagnetic field from the COV-OBS.x1 geomagnetic field model, and candidate models for IGRF-12. Earth, Planet and Space 67, 71 (2015).

    Google Scholar 

  9. Wen-yao, Xu.: Unusual behavior of the IGRF during the 1945–1955 period. Earth Planets Space. V. 52. P. 1227–1233 (2000).

    Google Scholar 

  10. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley Pub. Co., Reading, Massachusetts, USA (1977).

    Google Scholar 

  11. Freund, R.J., Mohr D.L., Wilson W.J.: Statistical Methods. 3d ed. Academic press, Salt Lake City, USA (2010).

    Google Scholar 

  12. Parkinson, W.D.: Introduction to Geomagnetism. Scottish Acad. Press, Edinburgh (1983).

    Google Scholar 

  13. Braginsky, S.I., Roberts P.H.: Equations governing convection in the Earth’s core and the geodynamo, Geophys. Astrophys. Fluid Dynamics 79, 1–97 (1995).

    Google Scholar 

  14. Starchenko, S.V., Jones V.: Typical velocity and magnetic field strengths in planetary interiors. Icarus 157, 426–435 (2002).

    Google Scholar 

  15. Starchenko, S.V.: Analytic base of geodynamo-like scaling laws in the planets, geomagnetic periodicities and inversions. Geomagn. Aeron. 54(6), 694–701 (2014).

    Google Scholar 

  16. Starchenko, S.V.: Analytic scaling laws in planetary dynamo models. Geophysical and Astrophysical Fluid Dynamics 113(1–2), 71–79 (2019).

    Google Scholar 

  17. Starchenko, S.V., Smirnov A.Y.: Volume Currents of Present-Day Magnetic Dipole in the Earth’s Core. Izv., Phys. Solid Earth 57, 474–478 (2021).

    Google Scholar 

  18. Braginsky, S.I.: Analytical description of the geomagnetic field of past epochs and determination of the spectrum of magnetic waves in the earth's core. Geomagn. Aeron. 14(3), 522–529 (1974).

    Google Scholar 

  19. Burakov, K.S., Galyagin D.K., Nachasova I.E., Reshetnyak M.Yu., Sokolov D.D., Frick P.G.: Wavelet analysis of geomagnetic field intensity for the past 4000 years. Izvestiya, Physics of the Solid Earth 34(9), 773–778 (1998).

    Google Scholar 

  20. Nachasova, I.E., Pilipenko O.V.: Archaeomagnetic studies at Schmidt institute of physics of the earth, russian academy of sciences: history and main results. Izvestiya, Physics of the Solid Earth 55(2), 298–310 (2019).

    Google Scholar 

  21. Starchenko S.V.: Harmonic sources of the main geomagnetic field in the earth's core. Geomagn. Aeron. 51(3), 409–414 (2011).

    Google Scholar 

  22. Starchenko, S.V., Yakovleva S.V.: Determination of specific time variations in the energy of the earth’s magnetic potential field from the IGRF model. Geomagn. Aeron. 59(5), 606–611 (2019b).

    Google Scholar 

  23. Starchenko, S.V., Pushkarev Y.D.: Magnetohydrodynamic scaling of geodynamo and a planetary protocore concept. Magnetohydrodynamics 49(1-2), 35–42 (2013).

    Google Scholar 

  24. Bouligand, C., Gillet N., Jault D., Schaeffer N., Fournier A., Aubert J.: Frequency spectrum of the geomagnetic field harmonic coefficients from dynamo simulations. Geophysical Journal International 207(2), 1142–1157 (2016).

    Google Scholar 

  25. Morzfeld, M., Buffett B.A.: A comprehensive model for the kyr and Myr timescales of Earth's axial magnetic dipole field. Nonlinear Processes in Geophysics 26(3), 123–142 (2019).

    Google Scholar 

  26. Panovska, S., Finlay C.C., Hirt A.M.: Observed periodicities and the spectrum of field variations in Holocene magnetic records. Earth and Planetary Science Letters 379, 88–94 (2013).

    Google Scholar 

  27. Panovska, S., Constable C.G., Korte M.: Extending global continuous geomagnetic field reconstructions on timescales beyond human civilization. Geochemistry, Geophysics, Geosystems 19(12), 4757–4772 (2018).

    Google Scholar 

  28. Hulot, G., Le Mouël J.L.: A statistical approach to the Earth's main magnetic field. Physics of the Earth and Planetary Interiors 82(3-4), 167–183 (1984).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to IZMIRAN for financial assistance in the preparation of the article, and to three anonymous referees who helped us to improve this work significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Starchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Starchenko, S.V., Yakovleva, S.V. (2023). Visual Statistics of the Total Geomagnetic Field Power. In: Kosterov, A., Lyskova, E., Mironova, I., Apatenkov, S., Baranov, S. (eds) Problems of Geocosmos—2022. ICS 2022. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-40728-4_9

Download citation

Publish with us

Policies and ethics