Skip to main content

A Fuzzy Logic Ensemble Approach to Concept Drift Detection

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14001))

Included in the following conference series:

  • 619 Accesses

Abstract

Concept drift occurs when the statistical properties of a data distribution change over time, causing the performance of machine learning models trained on prior data to degrade. This is a prevalent issue in many real-world applications where the data distribution can shift due to factors such as user behaviour alterations, environmental changes, or modifications in the data-generating system. Detecting concept drift is crucial for developing robust and adaptive machine learning systems. However, identifying excessive drifts may lead to decreased model performance.

In this article, we present an ensemble method employing multiple concept drift detectors to detect concept drift. A fuzzy logic approach balances the outputs of the various drift detectors comprising the ensemble.

The proposed framework can handle concept drift in regression problems. Experimental results demonstrate enhanced efficiency in detecting concept drifts under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amador Coelho, R., Bambirra Torres, L.C., Leite de Castro, C.: Concept drift detection with quadtree-based spatial mapping of streaming data. Inf. Sci. 625, 578–592 (2023). https://doi.org/10.1016/j.ins.2022.12.085, https://www.sciencedirect.com/science/article/pii/S0020025522015808

  2. Bibinbe, A.M.S.N., Mahamadou, A.J., Mbouopda, M.F., Nguifo, E.M.: DragStream: an anomaly and concept drift detector in univariate data streams. In: 2022 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 842–851 (2022). https://doi.org/10.1109/ICDMW58026.2022.00113

  3. Cerqueira, V., Gomes, H.M., Bifet, A., Torgo, L.: STUDD: a student-teacher method for unsupervised concept drift detection. Mach. Learn. 1–28 (2022)

    Google Scholar 

  4. Choudhary, V., Gupta, B., Chatterjee, A., Paul, S., Banerjee, K., Agneeswaran, V.: Detecting concept drift in the presence of sparsity-a case study of automated change risk assessment system. arXiv preprint arXiv:2207.13287 (2022)

  5. Desale, K.S., Shinde, S.V.: Addressing concept drifts using deep learning for heart disease prediction: a review. In: Gupta, D., Khanna, A., Kansal, V., Fortino, G., Hassanien, A.E. (eds.) Proceedings of Second Doctoral Symposium on Computational Intelligence. AISC, vol. 1374, pp. 157–167. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-3346-1_13

    Chapter  Google Scholar 

  6. Green, D.H., Langham, A.W., Agustin, R.A., Quinn, D.W., Leeb, S.B.: Adaptation for automated drift detection in electromechanical machine monitoring. IEEE Trans. Neural Netw. Learn. Syst. 1–15(2022)

    Google Scholar 

  7. Grulich, P., Saitenmacher, R., Traub, J., BreSS, S., Rabl, T., Markl, V.: Scalable detection of concept drifts on data streams with parallel adaptive windowing (2018). https://doi.org/10.5441/002/edbt.2018.51

  8. Klikowski, J.: Concept drift detector based on centroid distance analysis. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2022). https://doi.org/10.1109/IJCNN55064.2022.9892399

  9. Komorniczak, J., Zyblewski, P., Ksieniewicz, P.: Statistical drift detection ensemble for batch processing of data streams. Knowl. Based Syst. 252, 109380 (2022). https://doi.org/10.1016/j.knosys.2022.109380, https://www.sciencedirect.com/science/article/pii/S095070512200692X

  10. Lee, S., Park, S.H.: Concept drift modeling for robust autonomous vehicle control systems in time-varying traffic environments. Expert Syst. Appl. 190, 116206 (2022)

    Article  Google Scholar 

  11. Lima, M., Neto, M., Filho, T.S., de A. Fagundes, R.A.: Learning under concept drift for regression–a systematic literature review. IEEE Access 10, 45410–45429 (2022). https://doi.org/10.1109/ACCESS.2022.3169785

  12. Liu, A., Lu, J., Zhang, G.: Concept drift detection via equal intensity k-means space partitioning. IEEE Trans. Cybern. 51(6), 3198–3211 (2021). https://doi.org/10.1109/TCYB.2020.2983962

    Article  Google Scholar 

  13. López Lobo, J.: Synthetic datasets for concept drift detection purposes (2020). https://doi.org/10.7910/DVN/5OWRGB

  14. Mavromatis, I., et al.: Le3d: A lightweight ensemble framework of data drift detectors for resource-constrained devices (2022). https://doi.org/10.48550/ARXIV.2211.01840 , https://arxiv.org/abs/2211.01840

  15. Mouss, H., Mouss, M., Mouss, K., Linda, S.: Test of page-hinckley, an approach for fault detection in an agro-alimentary production system, vol. 2, pp. 815–818 (2004). DOI: https://doi.org/10.1109/ASCC.2004.184970

  16. Poenaru-Olaru, L., Cruz, L., van Deursen, A., Rellermeyer, J.S.: Are concept drift detectors reliable alarming systems? - a comparative study (2022). https://doi.org/10.48550/ARXIV.2211.13098, https://arxiv.org/abs/2211.13098

  17. Sun, J., Li, H., Adeli, H.: Concept drift-oriented adaptive and dynamic support vector machine ensemble with time window in corporate financial risk prediction. IEEE Trans. Syst. Man, Cybern. Syst. 43(4), 801–813 (2013)

    Article  Google Scholar 

  18. Togbe, M.U., Chabchoub, Y., Boly, A., Barry, M., Chiky, R., Bahri, M.: Anomalies detection using isolation in concept-drifting data streams. Computers 10(1), 13 (2021). https://doi.org/10.3390/computers10010013, https://www.mdpi.com/2073-431X/10/1/13

  19. Yu, H., Zhang, Q., Liu, T., Lu, J., Wen, Y., Zhang, G.: Meta-add: a meta-learning based pre-trained model for concept drift active detection. Inf. Sci. 608, 996–1009 (2022). https://doi.org/10.1016/j.ins.2022.07.022, https://www.sciencedirect.com/science/article/pii/S0020025522007125

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos del Campo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

del Campo, C., Sanz, B., Díaz, J., Onieva, E. (2023). A Fuzzy Logic Ensemble Approach to Concept Drift Detection. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2023. Lecture Notes in Computer Science(), vol 14001. Springer, Cham. https://doi.org/10.1007/978-3-031-40725-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40725-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40724-6

  • Online ISBN: 978-3-031-40725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics