Skip to main content

Meta-Learning for Hyperparameters Tuning in CNNs for Chest Images

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2023)

Abstract

Hyperparameter tuning is a time-consuming task for deep learning models. Meta-learning offers a promising solution to reduce the time required for this task. In this work, we propose a meta-learning approach to simulate a set of experiments and select a hyperparameter configuration (HC) that achieves high accuracy using a deep model. Our formulation involves conducting a grid search over hyperparameters to train a convolutional neural network and get an overview of their space. Then, a meta-regressor was trained using the experiment data to predict accuracy as a function of hyperparameter sets. Subsequently, the trained meta-regressor was employed to simulate diverse HCs and assess the corresponding deep model performance. Our approach was tested across two different domains: COVID-19 detection using X-ray images, and lung detection in computer tomography volumes. Furthermore, we evaluated the proposed approach with two different architectures. Our results show that the proposed method can simulate a set of experiments using the meta-regressor, saving time and computing resources during hyperparameter tuning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: Towards domain generalization using meta-regularization. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 1–11. Curran Associates, Inc. (2018)

    Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  3. Ceron, J.S.O., Castro, P.S.: Revisiting rainbow: promoting more insightful and inclusive deep reinforcement learning research. In: International Conference on Machine Learning, pp. 1373–1383. PMLR (2021)

    Google Scholar 

  4. Chowdhury, M.E.: Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 8, 132665–132676 (2020)

    Article  Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    Article  Google Scholar 

  6. Ding, Y., et al.: Learning to learn by jointly optimizing neural architecture and weights. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 129–138 (2022)

    Google Scholar 

  7. Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M.: Bilevel programming for hyperparameter optimization and meta-learning. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1568–1577. PMLR (2018)

    Google Scholar 

  8. Garouani, M., Ahmad, A., Bouneffa, M., Hamlich, M., Bourguin, G., Lewandowski, A.: Using meta-learning for automated algorithms selection and configuration: an experimental framework for industrial big data. J. Big Data 9(1), 57 (2022)

    Article  Google Scholar 

  9. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  10. Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5149–5169 (2021)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Liang, H., et al.: Training interpretable convolutional neural networks by differentiating class-specific filters. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 622–638. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_37

    Chapter  Google Scholar 

  13. Liashchynskyi, P., Liashchynskyi, P.: Grid search, random search, genetic algorithm: a big comparison for NAS. arXiv preprint arXiv:1912.06059 (2019)

  14. Occorso, M., Sabbioni, L., Metelli, A.M., Restelli, M.: Trust region meta learning for policy optimization. In: ECMLPKDD Workshop on Meta-Knowledge Transfer, pp. 62–74. PMLR (2022)

    Google Scholar 

  15. Oshiro, T.M., Perez, P.S., Baranauskas, J.A.: How many trees in a random forest? In: Perner, P. (ed.) MLDM 2012. LNCS (LNAI), vol. 7376, pp. 154–168. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31537-4_13

    Chapter  Google Scholar 

  16. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  17. Raschka, S.: Model evaluation, model selection, and algorithm selection in machine learning. arXiv preprint arXiv:1811.12808 (2018)

  18. Roth, H.R.: Rapid artificial intelligence solutions in a pandemic-the COVID-19-20 lung CT lesion segmentation challenge. Med. Image Anal. 82, 102605 (2022)

    Article  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  20. Xiao, X., Yan, M., Basodi, S., Ji, C., Pan, Y.: Efficient hyperparameter optimization in deep learning using a variable length genetic algorithm. arXiv preprint arXiv:2006.12703 (2020)

Download references

Acknowledgments

This work was supported by the Universidad Nacional Autónoma de México by means of PAPIIT grants TA101121 and IV100420. Rodrigo Ramos Díaz acknowledges CONACYT for the scholarship that supports his PhD studies associated with CVU number 927245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Escalante-Ramírez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Ramírez, J., Ramos Díaz, R., Olveres, J., Escalante-Ramírez, B. (2023). Meta-Learning for Hyperparameters Tuning in CNNs for Chest Images. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2023. Lecture Notes in Computer Science(), vol 14001. Springer, Cham. https://doi.org/10.1007/978-3-031-40725-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40725-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40724-6

  • Online ISBN: 978-3-031-40725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics