Skip to main content

Identification of Anomalies in Urban Sound Data with Autoencoders

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14001))

Included in the following conference series:

  • 596 Accesses

Abstract

The growing population in the metropolises is influencing the need to plan cities to be safer for people. Several Smart Cities initiatives are being implemented in the cities to achieve this goal. A network of acoustic sensors has been deployed in New York City thanks to the SONYC project. Sounds of the city are being collected and analyzed. In this research work, acoustic signal data are represented with Mel-spectrogram images with mel-scale frequency versus time on a decibel scale. Traditional autoencoders and variational autoencoder models are deployed to detect anomalies in the mel-spectrogram images. The obtained results demonstrate that the variational autoencoder model finds anomalies accurately in the acoustic records.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abri, F., Gutiérrez, L.F., Siami Namin, A., Sears, D.R.W., Jones, K.S.: Predicting emotions perceived from sounds. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 2057–2064 (2020)

    Google Scholar 

  2. Agency, E.E.: Noise pollution is a major environmental health concern in Europe (2022). https://www.eea.europa.eu/themes/human/noise. Accessed 30 Apr 2023

  3. Altan, G., Kutlu, Y.: Chapter three - generalization performance of deep autoencoder kernels for identification of abnormalities on electrocardiograms. In: Das, H., Pradhan, C., Dey, N. (eds.) Deep Learning for Data Analytics, pp. 37–62. Academic Press (2020)

    Google Scholar 

  4. Bello, J.P., et al.: SONYC: a system for monitoring, analyzing, and mitigating urban noise pollution. Commun. ACM 62(2), 68–77 (2019)

    Article  MathSciNet  Google Scholar 

  5. Camero, A., Alba, E.: Smart city and information technology: a review. Cities 93, 84–94 (2019)

    Article  Google Scholar 

  6. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009)

    Article  Google Scholar 

  7. Ciaburro, G., Iannace, G.: Improving smart cities safety using sound events detection based on deep neural network algorithms. In: Informatics, vol. 7, no. 3 (2020)

    Google Scholar 

  8. Dua, S., et al.: Developing a speech recognition system for recognizing tonal speech signals using a convolutional neural network. Appl. Sci. 12, 6223 (2022)

    Article  Google Scholar 

  9. Ehsani, N., Aminifar, F., Mohsenian-Rad, H.: Convolutional autoencoder anomaly detection and classification based on distribution PMU measurements. IET Gener. Transm. Distrib. 16(14), 2816–2828 (2022)

    Article  Google Scholar 

  10. Kunapuli, S.S., Bhallamudi, P.C.: Chapter 22 - a review of deep learning models for medical diagnosis. In: Machine Learning. Big Data, and IoT for Medical Informatics, pp. 389–404. Academic Press, Intelligent Data-Centric Systems (2021)

    Google Scholar 

  11. Lebrusán, I., Toutouh, J.: Using smart city tools to evaluate the effectiveness of a low emissions zone in Spain: Madrid central. Smart Cities 3(2), 456–478 (2020)

    Article  Google Scholar 

  12. Lerch, A., Knees, P.: Machine learning applied to music/audio signal processing. Electronics 10(24), 3077 (2021)

    Article  Google Scholar 

  13. Librosa: Documentation (2023). https://librosa.org/doc/latest/index.html. Accessed 20 Apr 2023

  14. Murphree, J.: Machine learning anomaly detection in large systems. In: 2016 IEEE AUTOTESTCON, pp. 1–9. IEEE (2016)

    Google Scholar 

  15. Müller, R., Illium, S., Ritz, F., Schmid, K.: Analysis of feature representations for anomalous sound detection. In: Proceedings of the 13th International Conference on Agents and Artificial Intelligence. Science and Technology Publications (2021)

    Google Scholar 

  16. Natsiou, A., O’Leary, S.: Audio representations for deep learning in sound synthesis: a review. 2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA), pp. 1–8 (2021)

    Google Scholar 

  17. Pita, A., Rodriguez, F.J., Navarro, J.M.: Cluster analysis of urban acoustic environments on Barcelona sensor network data. Int. J. Environ. Res. Public Health 18(16), 8271 (2021)

    Article  Google Scholar 

  18. Ren, Z., Chang, Y., Bartl-Pokorny, K.D., Pokorny, F.B., Schuller, B.W.: The acoustic dissection of cough: diving into machine listening-based COVID-19 analysis and detection. J. Voice 22 (2022)

    Google Scholar 

  19. Rovetta, S., Mnasri, Z., Masulli, F., Cabri, A.: Anomaly detection based on interval-valued fuzzy sets: application to rare sound event detection. In: WILF. CEUR Workshop Proceedings (2021)

    Google Scholar 

  20. Singh, K.: Anomaly detection and diagnosis in manufacturing systems: a comparative study of statistical, machine learning and deep learning techniques. In: PHM Society, vol. 11 (2019)

    Google Scholar 

  21. (SONYC-UST), S.U.S.T.: A multilabel dataset from an urban acoustic sensor network (2020). https://zenodo.org/record/3966543#.YznJ93ZByUk

  22. Venkatesh, S., Moffat, D., Miranda, E.R.: You only hear once: a YOLO-like algorithm for audio segmentation and sound event detection. Appl. Sci. 12(7), 3293 (2022)

    Article  Google Scholar 

  23. Wang, Y., et al.: Unsupervised anomalous sound detection for machine condition monitoring using classification-based methods. Appl. Sci. 11(23), 11128 (2021)

    Article  Google Scholar 

  24. Wei, Y., Jang-Jaccard, J., Xu, W., Sabrina, F., Camtepe, S., Boulic, M.: LSTM-autoencoder based anomaly detection for indoor air quality time series data (2022)

    Google Scholar 

  25. Zhao, F., Fashola, O.I., Olarewaju, T.I., Onwumere, I.: Smart city research: a holistic and state-of-the-art literature review. Cities 119, 103406 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Spanish Ministry of Science and Innovation for the support under projects PID2020-117954RB-C2 and TED2021-131311B-C22, the European Regional Development Fund and Junta de Andalucía for PY20-00870, P18-RT-2778 and UPO-138516 and the US-Spain Fulbright grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Melgar-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Melgar-García, L., Hosseini, M., Troncoso, A. (2023). Identification of Anomalies in Urban Sound Data with Autoencoders. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2023. Lecture Notes in Computer Science(), vol 14001. Springer, Cham. https://doi.org/10.1007/978-3-031-40725-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40725-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40724-6

  • Online ISBN: 978-3-031-40725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics