Skip to main content

Convolutional Neural Network-Based Cancer Detection Using Histopathologic Images

  • Chapter
  • First Online:
Innovations in Machine and Deep Learning

Part of the book series: Studies in Big Data ((SBD,volume 134))

  • 355 Accesses

Abstract

Cancer is one of the major health issues currently. Amongst different types of cancer in women, breast cancer stands in the second-highest place. Compared to other kinds of cancer, breast cancer mortality is high. The histopathological analysis is still considered the typical method of identifying cancer, even with the swift developments in medical disciplines. Analysis of histopathological images is time-consuming due to its complexity, and additionally, the results pertain to pathologist subjectivity. Therefore, developing robust and precise cancer detection using histopathological image analysis methods is essential. In this chapter, we discuss the problem of Cancer Detection using a deep learning-based approach. We provide details of the convolutional neural network (CNN), a neural network used for image datasets. Next, we describe various hyper-optimization techniques to optimize the training of the CNN network. Furthermore, we implement Cancer Detection by proposing a learning-based framework on the open-source Histopathologic Cancer Detection dataset. This dataset is available on Kaggle. The proposed framework uses CNN to detect cancer using advanced deep learning frameworks like TensorFlow. This approach can be extended to classify histopathologic images in other biomedical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lakhani, S.R., Ellis, I.O., Schnitt, S., Tan, P., van de Vijver, M.: WHO Classification of Tumours of the Breast. WHO Press, Lyon (2012)

    Google Scholar 

  2. Kowal, M., Filipczuk, P., Obuchowicz, A., Korbicz, J., Monczak, R.: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Comput. Biol. Med. 43(10), 1563–1572 (2013). https://doi.org/10.1016/j.compbiomed.2013.08.003

    Article  Google Scholar 

  3. Filipczuk, P., Fevens, T., Krzyzak, A., Monczak, R.: Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans. Med. Imaging 32(12), 2169–2178 (2013). https://doi.org/10.1109/tmi.2013.2275151

    Article  Google Scholar 

  4. George, Y.M., Zayed, H.L., Roushdy, M.I., Elbagoury, B.M.: Remote computer-aided breast cancer detection and diagnosis system based on cytological images. IEEE Syst. J. 8(3), 949–964 (2014). https://doi.org/10.1109/jsyst.2013.2279415

    Article  Google Scholar 

  5. Sirigineedi, S.S., Soni, J., Upadhyay, H.: Learning-based models to detect runtime phishing activities using URLs. In: Proceedings of the 2020 the 4th International Conference on Compute and Data Analysis (ICCDA 2020), pp. 102–106. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3388142.3388170

  6. Zhang, Y., Zhang, B., Coenen, F., Lu, W.: Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles. Mach. Vis. Appl. 24(7), 1405–1420 (2013). https://doi.org/10.1007/s00138-012-0459-8

    Article  Google Scholar 

  7. Zhang, Y., Zhang, B., Coenen, F., Xiau, J., Lu, W.: One-class kernel subspace ensemble for medical image classification. EURASIP J. Adv. Signal Process. 2014(17), 1–13 (2014). https://doi.org/10.1186/1687-6180-2014-17

    Article  Google Scholar 

  8. Doyle, S., Agner, S., Madabhushi, A., Feldman, M., Tomaszewski, J.: Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features. In: Proceedings of the 5th IEEE International Symposium on Biomedical Imaging (ISBI): From Nano to Macro, vol. 61, pp. 496–499, May (2008). https://doi.org/10.1109/isbi.2008.4541041

  9. Spanhol, F., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. (2016). https://doi.org/10.1109/tbme.2015.2496264

    Article  Google Scholar 

  10. Hafemann, L.G., Oliveira, L.S., Cavalin, P.: Forest species recognition using deep convolutional neural networks. In: International Conference on Pattern Recognition, pp. 1103–1107 (2014). https://doi.org/10.1109/icpr.2014.199

  11. Ohshio, I., Hatayama, A., Kaneda, K., Takahara, M., Nagashima, K.: Correlation between histopathologic features and magnetic resonance images of spinal cord lesions. Spine 18(9), 1140–1149 (1993). https://doi.org/10.1097/00007632-199307000-00005

    Article  Google Scholar 

  12. De Matos, J., Britto Jr., A.D.S., Oliveira, L.E., Koerich, A.L.: Histopathologic image processing: a review (2019). arXiv preprint arXiv:1904.07900

  13. Bradski, G., Kaehler, A.: OpenCV. Dr. Dobb’s J. Softw. Tools 3, 2 (2000)

    Google Scholar 

  14. Gangwani, P., Soni, J., Upadhyay, H., Joshi, S.: A deep learning approach for modeling of geothermal energy prediction. Int. J. Comput. Sci. Inf. Secur. 18(1), 62–65 (2020)

    Google Scholar 

  15. Gangwani, D., Gangwani, P.: Applications of machine learning and artificial intelligence in intelligent transportation system: a review. In: Lecture Notes in Electrical Engineering, pp. 203–216. Springer (2021). https://doi.org/10.1007/978-981-16-3067-5_16

  16. Soni, J., Peddoju, S.K., Prabakar, N., Upadhyay, H.: Comparative analysis of LSTM, one-class SVM, and PCA to monitor real-time malware threats using system call sequences and virtual machine introspection. In: International Conference on Communication, Computing and Electronics Systems, pp. 113–127. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4909-4_9

  17. Soni, J., Prabakar, N., Upadhyay, H.: Behavioral analysis of system call sequences using LSTM Seq-Seq, cosine similarity and Jaccard similarity for real-time anomaly detection. In: 2019 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 214–219. IEEE (2019). https://doi.org/10.1109/csci49370.2019.00043

  18. Medsker, L., Jain, L.C. (eds.): Recurrent Neural Networks: Design and Applications. CRC Press (1999)

    Google Scholar 

  19. Pazos-Rangel, R.A., Florencia-Juarez, R., Paredes-Valverde, M.A., Rivera, G. (eds.): Handbook of Research on Natural Language Processing and Smart Service Systems. IGI Global (2021). https://doi.org/10.4018/978-1-7998-4730-4

  20. Pazos-Rangel, R.A., Rivera, G., Gaspar, J., Florencia-Juárez, R.: Natural language interfaces to databases: a survey on recent advances. In: Handbook of Research on Natural Language Processing and Smart Service Systems, pp. 1–30. IGI Global (2021). https://doi.org/10.4018/978-1-7998-4730-4.ch001

  21. Lin, X., Zhao, C., Pan, W. (2017). Towards accurate binary convolutional neural network. In: Advances in Neural Information Processing Systems, 30

    Google Scholar 

  22. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018). https://doi.org/10.1109/msp.2017.2765202

    Article  Google Scholar 

  23. Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998). https://doi.org/10.1016/s1352-2310(97)00447-0

    Article  Google Scholar 

  24. Wang, S.C.: Artificial neural network. In: Interdisciplinary Computing in Java Programming, pp. 81–100. Springer, Boston, MA (2003). https://doi.org/10.1007/978-1-4615-0377-4_5

  25. Liashchynskyi, P., Liashchynskyi, P.: Grid search, random search, genetic algorithm: a big comparison for NAS (2019). arXiv preprint arXiv:1912.06059

  26. Dillon, J.V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Saurous, R.A.: Tensorflow distributions (2017). arXiv preprint arXiv:1711.10604

  27. Ketkar, N.: Introduction to Keras. In: Deep Learning with Python, pp. 97–111. Apress, Berkeley, CA (2017). https://doi.org/10.1007/978-1-4842-2766-4_7

  28. Kramer, O.: Scikit-learn. In: Machine Learning for Evolution Strategies, pp. 45–53. Springer, Cham (2016)

    Google Scholar 

  29. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Duchesnay, E., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011). https://doi.org/10.3389/fninf.2014.00014

  30. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNs for digital pathology. https://doi.org/10.1007/978-3-030-00934-2_24

  31. Bejnordi, E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA: J. Am. Med. Assoc. 318(22), 21992210. https://doi.org/10.1001/jama.2017.14580

  32. Soni, J., Prabakar, N., Upadhyay, H.: Visualizing high-dimensional data using t-distributed stochastic neighbor embedding algorithm. In: Principles of Data Science, pp. 189–206. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43981-1_9

  33. Soni, J., Prabakar, N., Upadhyay, H.: Feature extraction through deepwalk on weighted graph. In: Proceedings of the 15th International Conference on Data Science (ICDATA’19), Las Vegas, NV (2019)

    Google Scholar 

  34. Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: AggNet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016). https://doi.org/10.1109/tmi.2016.2528120

    Article  Google Scholar 

  35. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. https://doi.org/10.5244/c.31.57

  36. Szegedy, C., Wei, L., Yangqing, J., et al.: Going deeper with convolutions. Paper presented at IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, 7–12 June 2015. https://doi.org/10.1109/cvpr.2015.7298594

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayesh Soni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soni, J., Prabakar, N., Upadhyay, H. (2023). Convolutional Neural Network-Based Cancer Detection Using Histopathologic Images. In: Rivera, G., Rosete, A., Dorronsoro, B., Rangel-Valdez, N. (eds) Innovations in Machine and Deep Learning. Studies in Big Data, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-031-40688-1_13

Download citation

Publish with us

Policies and ethics