Abstract
Cancer is one of the major health issues currently. Amongst different types of cancer in women, breast cancer stands in the second-highest place. Compared to other kinds of cancer, breast cancer mortality is high. The histopathological analysis is still considered the typical method of identifying cancer, even with the swift developments in medical disciplines. Analysis of histopathological images is time-consuming due to its complexity, and additionally, the results pertain to pathologist subjectivity. Therefore, developing robust and precise cancer detection using histopathological image analysis methods is essential. In this chapter, we discuss the problem of Cancer Detection using a deep learning-based approach. We provide details of the convolutional neural network (CNN), a neural network used for image datasets. Next, we describe various hyper-optimization techniques to optimize the training of the CNN network. Furthermore, we implement Cancer Detection by proposing a learning-based framework on the open-source Histopathologic Cancer Detection dataset. This dataset is available on Kaggle. The proposed framework uses CNN to detect cancer using advanced deep learning frameworks like TensorFlow. This approach can be extended to classify histopathologic images in other biomedical areas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lakhani, S.R., Ellis, I.O., Schnitt, S., Tan, P., van de Vijver, M.: WHO Classification of Tumours of the Breast. WHO Press, Lyon (2012)
Kowal, M., Filipczuk, P., Obuchowicz, A., Korbicz, J., Monczak, R.: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Comput. Biol. Med. 43(10), 1563–1572 (2013). https://doi.org/10.1016/j.compbiomed.2013.08.003
Filipczuk, P., Fevens, T., Krzyzak, A., Monczak, R.: Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans. Med. Imaging 32(12), 2169–2178 (2013). https://doi.org/10.1109/tmi.2013.2275151
George, Y.M., Zayed, H.L., Roushdy, M.I., Elbagoury, B.M.: Remote computer-aided breast cancer detection and diagnosis system based on cytological images. IEEE Syst. J. 8(3), 949–964 (2014). https://doi.org/10.1109/jsyst.2013.2279415
Sirigineedi, S.S., Soni, J., Upadhyay, H.: Learning-based models to detect runtime phishing activities using URLs. In: Proceedings of the 2020 the 4th International Conference on Compute and Data Analysis (ICCDA 2020), pp. 102–106. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3388142.3388170
Zhang, Y., Zhang, B., Coenen, F., Lu, W.: Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles. Mach. Vis. Appl. 24(7), 1405–1420 (2013). https://doi.org/10.1007/s00138-012-0459-8
Zhang, Y., Zhang, B., Coenen, F., Xiau, J., Lu, W.: One-class kernel subspace ensemble for medical image classification. EURASIP J. Adv. Signal Process. 2014(17), 1–13 (2014). https://doi.org/10.1186/1687-6180-2014-17
Doyle, S., Agner, S., Madabhushi, A., Feldman, M., Tomaszewski, J.: Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features. In: Proceedings of the 5th IEEE International Symposium on Biomedical Imaging (ISBI): From Nano to Macro, vol. 61, pp. 496–499, May (2008). https://doi.org/10.1109/isbi.2008.4541041
Spanhol, F., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. (2016). https://doi.org/10.1109/tbme.2015.2496264
Hafemann, L.G., Oliveira, L.S., Cavalin, P.: Forest species recognition using deep convolutional neural networks. In: International Conference on Pattern Recognition, pp. 1103–1107 (2014). https://doi.org/10.1109/icpr.2014.199
Ohshio, I., Hatayama, A., Kaneda, K., Takahara, M., Nagashima, K.: Correlation between histopathologic features and magnetic resonance images of spinal cord lesions. Spine 18(9), 1140–1149 (1993). https://doi.org/10.1097/00007632-199307000-00005
De Matos, J., Britto Jr., A.D.S., Oliveira, L.E., Koerich, A.L.: Histopathologic image processing: a review (2019). arXiv preprint arXiv:1904.07900
Bradski, G., Kaehler, A.: OpenCV. Dr. Dobb’s J. Softw. Tools 3, 2 (2000)
Gangwani, P., Soni, J., Upadhyay, H., Joshi, S.: A deep learning approach for modeling of geothermal energy prediction. Int. J. Comput. Sci. Inf. Secur. 18(1), 62–65 (2020)
Gangwani, D., Gangwani, P.: Applications of machine learning and artificial intelligence in intelligent transportation system: a review. In: Lecture Notes in Electrical Engineering, pp. 203–216. Springer (2021). https://doi.org/10.1007/978-981-16-3067-5_16
Soni, J., Peddoju, S.K., Prabakar, N., Upadhyay, H.: Comparative analysis of LSTM, one-class SVM, and PCA to monitor real-time malware threats using system call sequences and virtual machine introspection. In: International Conference on Communication, Computing and Electronics Systems, pp. 113–127. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4909-4_9
Soni, J., Prabakar, N., Upadhyay, H.: Behavioral analysis of system call sequences using LSTM Seq-Seq, cosine similarity and Jaccard similarity for real-time anomaly detection. In: 2019 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 214–219. IEEE (2019). https://doi.org/10.1109/csci49370.2019.00043
Medsker, L., Jain, L.C. (eds.): Recurrent Neural Networks: Design and Applications. CRC Press (1999)
Pazos-Rangel, R.A., Florencia-Juarez, R., Paredes-Valverde, M.A., Rivera, G. (eds.): Handbook of Research on Natural Language Processing and Smart Service Systems. IGI Global (2021). https://doi.org/10.4018/978-1-7998-4730-4
Pazos-Rangel, R.A., Rivera, G., Gaspar, J., Florencia-Juárez, R.: Natural language interfaces to databases: a survey on recent advances. In: Handbook of Research on Natural Language Processing and Smart Service Systems, pp. 1–30. IGI Global (2021). https://doi.org/10.4018/978-1-7998-4730-4.ch001
Lin, X., Zhao, C., Pan, W. (2017). Towards accurate binary convolutional neural network. In: Advances in Neural Information Processing Systems, 30
Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018). https://doi.org/10.1109/msp.2017.2765202
Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998). https://doi.org/10.1016/s1352-2310(97)00447-0
Wang, S.C.: Artificial neural network. In: Interdisciplinary Computing in Java Programming, pp. 81–100. Springer, Boston, MA (2003). https://doi.org/10.1007/978-1-4615-0377-4_5
Liashchynskyi, P., Liashchynskyi, P.: Grid search, random search, genetic algorithm: a big comparison for NAS (2019). arXiv preprint arXiv:1912.06059
Dillon, J.V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Saurous, R.A.: Tensorflow distributions (2017). arXiv preprint arXiv:1711.10604
Ketkar, N.: Introduction to Keras. In: Deep Learning with Python, pp. 97–111. Apress, Berkeley, CA (2017). https://doi.org/10.1007/978-1-4842-2766-4_7
Kramer, O.: Scikit-learn. In: Machine Learning for Evolution Strategies, pp. 45–53. Springer, Cham (2016)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Duchesnay, E., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011). https://doi.org/10.3389/fninf.2014.00014
Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNs for digital pathology. https://doi.org/10.1007/978-3-030-00934-2_24
Bejnordi, E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA: J. Am. Med. Assoc. 318(22), 21992210. https://doi.org/10.1001/jama.2017.14580
Soni, J., Prabakar, N., Upadhyay, H.: Visualizing high-dimensional data using t-distributed stochastic neighbor embedding algorithm. In: Principles of Data Science, pp. 189–206. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43981-1_9
Soni, J., Prabakar, N., Upadhyay, H.: Feature extraction through deepwalk on weighted graph. In: Proceedings of the 15th International Conference on Data Science (ICDATA’19), Las Vegas, NV (2019)
Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: AggNet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016). https://doi.org/10.1109/tmi.2016.2528120
Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. https://doi.org/10.5244/c.31.57
Szegedy, C., Wei, L., Yangqing, J., et al.: Going deeper with convolutions. Paper presented at IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, 7–12 June 2015. https://doi.org/10.1109/cvpr.2015.7298594
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Soni, J., Prabakar, N., Upadhyay, H. (2023). Convolutional Neural Network-Based Cancer Detection Using Histopathologic Images. In: Rivera, G., Rosete, A., Dorronsoro, B., Rangel-Valdez, N. (eds) Innovations in Machine and Deep Learning. Studies in Big Data, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-031-40688-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-40688-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40687-4
Online ISBN: 978-3-031-40688-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)