Skip to main content

Future Directions in Fluorescence-and Image-Guided Surgery

  • Chapter
  • First Online:
The SAGES Manual of Fluorescence-Guided Surgery
  • 148 Accesses

Abstract

Fluorescence- and image-guided surgery are rapidly evolving fields that aim to bridge the gap between preoperative imaging and the intraoperative environment to improve surgical outcomes. Developments in novel molecular fluorophores, laser speckle contrast imaging, and augmented reality show promise in clinical adoption. Fluorescence guidance systems have been used in various clinical applications, including tumor localization, anatomy identification, perfusion assessment, and lymphatic mapping using fluorophores such as indocyanine green. Recent development of novel molecular and activatable fluorophores offers the potential for more specific lesion location and assessment of complete resection. Laser speckle contrast imaging (LSCI) is a noninvasive, real-time imaging technique with validation studies that suggest that it is a potentially valuable tool for perfusion assessment in surgery. Augmented reality is another technology that is increasingly useful in image-guided surgery which can aid surgeons in the rapid identification of subsurface targets and structures, reduce cognitive load, and guide resections by overlaying a virtual model onto the patient. The development of targeted molecular fluorophores, laser speckle contrast imaging, and augmented reality has the potential to improve surgical outcomes by providing more accurate and efficient image guidance during surgery. Ongoing research in these areas will lead to further advancements to enable expanded clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alander JT, et al. A review of indocyanine green fluorescent imaging in surgery. J Biomed Imaging. 2012;2012:7–7.

    Google Scholar 

  2. Stewart HL, Birch DJS. Fluorescence guided surgery. Methods Appl Fluoresc. 2021;9(4):042002.

    Article  CAS  Google Scholar 

  3. Haque A, et al. Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: a review. Bioorg Med Chem. 2017;25:7.

    Article  Google Scholar 

  4. Zhang Y, et al. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy. Chem Soc Rev. 2022;51(2):566–93.

    Article  CAS  PubMed  Google Scholar 

  5. Heeman W, et al. Clinical applications of laser speckle contrast imaging: a review. J Biomed Opt. 2019;24(8):080901–1.

    Google Scholar 

  6. Barcali E, et al. Augmented reality in surgery: a scoping review. Appl Sci. 2022;12(14):6890.

    Article  CAS  Google Scholar 

  7. Hillary SL, Guillermet S, Brown NJ, Balasubramanian SP. Use of methylene blue and near-infrared fluorescence in thyroid and parathyroid surgery. Langenbecks Arch Surg. 2018;403(1):111–8. https://doi.org/10.1007/s00423-017-1641-2. Epub 2017 Dec 11. PMID: 29230539; PMCID: PMC5805804.

    Article  PubMed  Google Scholar 

  8. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401. https://doi.org/10.1016/S1470-2045(06)70665-9. PMID: 16648043.

    Article  CAS  PubMed  Google Scholar 

  9. Nagaya T, et al. Fluorescence-guided surgery. Front Oncol. 2017;7:314.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harlaar NJ, et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study. Lancet Gastroenterol Hepatol. 2016;1(4):283–90.

    Article  PubMed  Google Scholar 

  11. Lamberts LE, et al. Tumor-specific uptake of fluorescent bevacizumab–IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study targeted near-infrared fluorescence imaging in breast cancer. Clin Cancer Res. 2017;23(11):2730–41.

    Article  CAS  PubMed  Google Scholar 

  12. Rosenthal EL, et al. Sensitivity and specificity of cetuximab-IRDye800CW to identify regional metastatic disease in head and neck cancer. Clin Cancer Res. 2017;23(16):4744–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Keulen S, et al. Rapid, non-invasive fluorescence margin assessment: Optical specimen mapping in oral squamous cell carcinoma. Oral Oncol. 2019;88:58–65.

    Article  PubMed  Google Scholar 

  14. Smith BL, et al. Real-time, intraoperative detection of residual breast cancer in lumpectomy cavity walls using a novel cathepsin-activated fluorescent imaging system. Breast Cancer Res Treat. 2018;171:413–20.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hwang ES, et al. Clinical impact of intraoperative margin assessment in breast-conserving surgery with a novel pegulicianine fluorescence–guided system: a nonrandomized controlled trial. JAMA Surg. 2022;157(7):573–80.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Souza D, Alisha V, et al. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt. 2016;21(8):080901–1.

    Google Scholar 

  17. Pogue BW, et al. Perspective review of what is needed for molecular-specific fluorescence-guided surgery. J Biomed Opt. 2018;23(10):100601–1.

    Google Scholar 

  18. Eriksson S, et al. Laser speckle contrast imaging for intraoperative assessment of liver microcirculation: a clinical pilot study. Med Devices. 2014;7:257–61.

    Article  Google Scholar 

  19. Ambrus R, et al. Evaluation of gastric microcirculation by laser speckle contrast imaging during esophagectomy. J Am Coll Surg. 2017;225(3):395–402.

    Article  PubMed  Google Scholar 

  20. Milstein DMJ, et al. Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy. Medicine. 2016;95:25.

    Article  Google Scholar 

  21. Heeman W, et al. Application of laser speckle contrast imaging in laparoscopic surgery. Biomed Opt Express. 2019;10(4):2010–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nwaiwu CA, et al. Feasibility and comparison of laparoscopic laser speckle contrast imaging to near-infrared display of indocyanine green in intraoperative tissue blood flow/tissue perfusion in preclinical porcine models. Surg Endosc. 2022;37:1–10.

    Google Scholar 

  23. Sanders CM, Nwaiwu CA, Liu YZ, Panchal AN, Butsch JL, Hoffman AB, Posner AR, Falvo MA, Visco J, Ortolani JB, Barone SM, Burstein MD, DeJesus C, Bouvy ND, Boni L, Shah SK, Wilson EB, Dechert AF, Buharin VE, Schwaitzberg SD, Kim PCW. ActivSightTM dye-less visualization of tissue perfusion in MIS surgery: interim analysis of first clinical (n=66) and preclinical (n=20) Studies with ICG comparison. World Congress of Endoscopic Surgery/European Association of Endoscopic Surgery 2021. Presentation date: November 24, 2021.

    Google Scholar 

  24. Shah SK, Nwaiwu CA, Agarwal AK, Bajwa KS, Felinksi MM, Walker PA, Wilson TD, Dechert AF, Kim PCW, Wilson EB. First-In-Human (FIH) Safety, feasibility, & usability trial (NCT# 04633512) of a laparoscopic imaging device using laser speckle contrast imaging (LSCI). In: Visualizing real-time tissue perfusion and blood flow without fluorophore in colorectal and bariatric patients, vol. 233. Boston: American College of Surgeons Clinical Congress; 2021. p. S45. Presentation date: October 24, 2021.

    Google Scholar 

  25. Parthasarathy AB, et al. Robust flow measurement with multi-exposure speckle imaging. Opt Express. 2008;16(3):1975–89.

    Article  PubMed  Google Scholar 

  26. Richards LM, et al. Intraoperative multi-exposure speckle imaging of cerebral blood flow. J Cereb Blood Flow Metab. 2017;37(9):3097–109. https://doi.org/10.1177/0271678X16686987.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gupta A, Ruijters D, Flexman ML. Augmented reality for interventional procedures. In: Digital surgery. Cham: Springer; 2021. p. 233–46.

    Chapter  Google Scholar 

  28. Shuhaiber JH. Augmented reality in surgery. Arch Surg. 2004;139(2):170–4.

    Article  PubMed  Google Scholar 

  29. Gmeiner M, Dirnberger J, Fenz W. Virtual cerebral aneurysm clipping with real-time haptic force feedback in neurosurgical education. World Neurosurg. 2018;112:e313–23.

    Article  PubMed  Google Scholar 

  30. Xin B, Chen G, Wang Y. The efficacy of immersive virtual reality surgical simulator training for pedicle screw placement: a randomized double-blind controlled trial. World Neurosurg. 2018;124:e324–30.

    Article  Google Scholar 

  31. Kang X, et al. Stereoscopic augmented reality for laparoscopic surgery. Surg Endosc. 2014;28(7):2227–35.

    Article  PubMed  Google Scholar 

  32. Tanagho YS, Andriole GL, Paradis AG, Madison KM, Sandhu GS, Varela JE, Benway BM. 2D versus 3D visualization: impact on laparoscopic proficiency using the fundamentals of laparoscopic surgery skill set. J Laparoendosc Adv Surg Tech A. 2012;22(9):865–70. https://doi.org/10.1089/lap.2012.0220. Epub 2012 Oct 16.

    Article  PubMed  Google Scholar 

  33. Gavaghan KA, et al. A portable image overlay projection device for computer-aided open liver surgery. IEEE Trans Biomed Eng. 2011;58(6):1855–64.

    Article  PubMed  Google Scholar 

  34. Wendler T, et al. First demonstration of 3-D lymphatic mapping in breast cancer using freehand SPECT. Eur J Nucl Med Mol Imaging. 2010;37(8):1452–61.

    Article  PubMed  Google Scholar 

  35. https://www.rsipvision.com/rsip-neph/.

  36. Herline AJ, Stefansic JD, Debelak JP, et al. Image-guided surgery: preliminary feasibility studies of frameless stereotactic liver surgery. Arch Surg. 1999;134:644.

    Article  CAS  PubMed  Google Scholar 

  37. Mountney P, Yang G-Z. Motion compensated SLAM for image guided surgery. Medical image computing and computer-assisted intervention–MICCAI. In: 13th international conference, Beijing, China, September 20–24, 2010, proceedings, part II 13. Berlin: Springer; 2010. p. 2010.

    Google Scholar 

  38. Bernhardt S, Nicolau SA, Soler L, Doignon C. The status of augmented reality in laparoscopic surgery as of 2016. Med Image Anal. 2017;37:66–90.

    Article  PubMed  Google Scholar 

  39. Vávra P, et al. Recent development of augmented reality in surgery: a review. J Healthc Eng. 2017;2017:1.

    Article  Google Scholar 

  40. Guanà R, Ferrero L, Garofalo S, Cerrina A, Cussa D, Arezzo A, Schleef J. Skills comparison in pediatric residents using a 2-dimensional versus a 3-dimensional high-definition camera in a pediatric laparoscopic simulator. J Surg Educ. 2017;74(4):644–9. https://doi.org/10.1016/j.jsurg.2016.12.002. Epub 2016 Dec 27.

    Article  PubMed  Google Scholar 

  41. Pratt P, Stoyanov D, Visentini-Scarzanella M, Yang GZ. Dynamic guidance for robotic surgery using image-constrained biomechanical models. In: In international conference on medical image computing and computer-assisted intervention. Springer; 2010. p. 77–85.

    Google Scholar 

  42. Condino S, Carbone M, Piazza R, Ferrari M, Ferrari V. Perceptual limits of optical see-through visors for augmented reality guidance of manual tasks. IEEE Trans Biomed Eng. 2020;67(2):411–9.

    Article  PubMed  Google Scholar 

  43. Edwards PJ, et al. The challenge of augmented reality in surgery. In: Digital surgery. Cham: Springer; 2021. p. 121–35.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, G. (2023). Future Directions in Fluorescence-and Image-Guided Surgery. In: Szoka, N., Renton, D., Horgan, S. (eds) The SAGES Manual of Fluorescence-Guided Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-40685-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40685-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40684-3

  • Online ISBN: 978-3-031-40685-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics