Skip to main content

Use of Fluorescence Guidance in Acute Care Surgery and Trauma

  • Chapter
  • First Online:
The SAGES Manual of Fluorescence-Guided Surgery

Abstract

Fluorescence-guided surgery (FGS), which utilizes fluorescent dye or a near-infrared-emitting light source to identify anatomic structures during surgical procedures, offers opportunities to enhance surgeon performance and patient outcomes in the acute care and trauma surgery. In these fields, use of FGS to enhance anatomic visualization and assess tissue perfusion has significant potential to improve the quality of surgical care.

This chapter briefly details the history and physiology of the fluorescent dye—indocyanine green (ICG)—and discusses its role, utility, and techniques in its use in acute care surgery and trauma surgery. Within acute care surgery, ICG is utilized as an adjunct in cholecystectomies as an anatomical visualization-enhancing modality to prevent biliary injury or as an adjunctive tool for the assessment of tissue perfusion in mesenteric ischemia or bowel obstructions to guide surgical decision-making objectively. With its ability to accurately depict perfusion, the role of FGS in trauma surgery and wound care primarily revolves around the assessment of tissue perfusion to guide surgical decision-making.

In each section, we also report ICG dosing, administration, coding, and reimbursement with respect to each procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reinhart MB, Huntington CR, Blair LJ, Heniford BT, Augenstein VA. Indocyanine green: historical context, current applications, and future considerations. Surg Innov. 2016;23(2):166–75. https://doi.org/10.1177/1553350615604053.

    Article  PubMed  Google Scholar 

  2. Desmettre T, Devoisselle JM, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol. 2000;45(1):15–27. https://doi.org/10.1016/s0039-6257(00)00123-5.

    Article  CAS  PubMed  Google Scholar 

  3. Cherrick GR, Stein SW, Leevy CM, Davidson CS. Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest. 1960;39:592–600. https://doi.org/10.1172/JCI104072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boni L, David G, Mangano A, Dionigi G, Rausei S, Spampatti S, et al. Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg Endosc. 2015;29(7):2046–55. https://doi.org/10.1007/s00464-014-3895-x.

    Article  PubMed  Google Scholar 

  5. van Manen LA-OX, Handgraaf HJM, Diana M, Dijkstra J, Ishizawa T, Vahrmeijer AA-O, et al. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J Surg Oncol. 2018;118(2):283–300.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alander JT, Kaartinen I, Laakso A, Patila T, Spillmann T, Tuchin VV, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012;2012:940585. https://doi.org/10.1155/2012/940585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Benya R, Quintana J, Brundage B. Adverse reactions to indocyanine green: a case report and a review of the literature. Catheter Cardiovasc Diagn. 1989;17(4):231–3. https://doi.org/10.1002/ccd.1810170410.

    Article  CAS  Google Scholar 

  8. Yamamoto M, Orihashi K, Nishimori H, Wariishi S, Fukutomi T, Kondo N, et al. Indocyanine green angiography for intra-operative assessment in vascular surgery. Eur J Vasc Endovasc Surg. 2012;43(4):426–32. https://doi.org/10.1016/j.ejvs.2011.12.030.

    Article  CAS  PubMed  Google Scholar 

  9. Holm C, Mayr M, Höfter E, Becker A, Pfeiffer UJ, Pfeiffer Mühlbauer W. Intraoperative evaluation of skin-flap viability using laser-induced fluorescence of indocyanine green. Br J Plast Surg. 2002;55(8):635–44.

    Article  CAS  PubMed  Google Scholar 

  10. Wirts CW, Cantarow A. A study of the excretion of bromsulphthalein in the bile. Am J Dig Dis. 1942;9(3):101–6. https://doi.org/10.1007/BF02996980.

    Article  CAS  Google Scholar 

  11. Paumgartner G, Vasella DL, Herz R, Reichen J, Preisig R. Hepatic extraction of taurocholate and indocyanine green in patients with liver disease (author’s transl). Z Gastroenterol. 1979;17(11):753–61.

    CAS  PubMed  Google Scholar 

  12. Rowell LB, Blackmon JR, Bruce RA. Indocyanine green clearance and estimated hepatic blood flow during mild to maximal exercise in upright man. J Clin Invest. 1964;43:1677–90. https://doi.org/10.1172/JCI105043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marano A, Priora F, Lenti LM, Ravazzoni F, Quarati R, Spinoglio G. Application of fluorescence in robotic general surgery: review of the literature and state of the art. World J Surg. 2013;37(12):2800–11. https://doi.org/10.1007/s00268-013-2066-x.

    Article  PubMed  Google Scholar 

  14. Blythe J, Herrmann E, Faust D, Falk S, Edwards-Lehr T, Stockhausen F, et al. Acute cholecystitis - a cohort study in a real-world clinical setting (REWO study, NCT02796443). Pragmat Obs Res. 2018;9:69–75. https://doi.org/10.2147/POR.S169255.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mangieri CW, Hendren BP, Strode MA, Bandera BC, Faler BJ. Bile duct injuries (BDI) in the advanced laparoscopic cholecystectomy era. Surg Endosc. 2019;33(3):724–30. https://doi.org/10.1007/s00464-018-6333-7.

    Article  PubMed  Google Scholar 

  16. Madni TD, Nakonezny PA, Imran JB, Taveras L, Cunningham HB, Vela R, et al. A comparison of cholecystitis grading scales. J Trauma Acute Care Surg. 2019;86(3):471–8. https://doi.org/10.1097/TA.0000000000002125.

    Article  PubMed  Google Scholar 

  17. Buddingh KT, Nieuwenhuijs VB, van Buuren L, Hulscher JB, de Jong JS, van Dam GM. Intraoperative assessment of biliary anatomy for prevention of bile duct injury: a review of current and future patient safety interventions. Surg Endosc. 2011;25(8):2449–61. https://doi.org/10.1007/s00464-011-1639-8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Flum DR, Flowers C, Veenstra DL. A cost-effectiveness analysis of intraoperative cholangiography in the prevention of bile duct injury during laparoscopic cholecystectomy. J Am Coll Surg. 2003;196(3):385–93. https://doi.org/10.1016/S1072-7515(02)01806-9.

    Article  PubMed  Google Scholar 

  19. Vlek SL, van Dam DA, Rubinstein SM, de Lange-de Klerk ESM, Schoonmade LJ, Tuynman JB, et al. Biliary tract visualization using near-infrared imaging with indocyanine green during laparoscopic cholecystectomy: results of a systematic review. Surg Endosc. 2017;31(7):2731–42. https://doi.org/10.1007/s00464-016-5318-7.

    Article  CAS  PubMed  Google Scholar 

  20. Aoki T, Murakami M, Yasuda D, Shimizu Y, Kusano T, Matsuda K, et al. Intraoperative fluorescent imaging using indocyanine green for liver mapping and cholangiography. J Hepatobiliary Pancreat Sci. 2010;17(5):590–4. https://doi.org/10.1007/s00534-009-0197-0.

    Article  PubMed  Google Scholar 

  21. Osayi SN, Wendling MR, Drosdeck JM, Chaudhry UI, Perry KA, Noria SF, et al. Near-infrared fluorescent cholangiography facilitates identification of biliary anatomy during laparoscopic cholecystectomy. Surg Endosc. 2015;29(2):368–75. https://doi.org/10.1007/s00464-014-3677-5.

    Article  PubMed  Google Scholar 

  22. Bronikowski D, Lombardo D, DeLa OC, Szoka N. Robotic subtotal cholecystectomy in a geriatric acute care surgery patient with super obesity. Case Rep Surg. 2021;2021:9992622. https://doi.org/10.1155/2021/9992622.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ambe PC, Plambeck J, Fernandez-Jesberg V, Zarras K. The role of indocyanine green fluoroscopy for intraoperative bile duct visualization during laparoscopic cholecystectomy: an observational cohort study in 70 patients. Patient Saf Surg. 2019;13:2. https://doi.org/10.1186/s13037-019-0182-8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Broderick RC, Lee AA-O, Cheverie JN, Zhao B, Blitzer RR, Patel RJ, et al. Fluorescent cholangiography significantly improves patient outcomes for laparoscopic cholecystectomy. Surg Endosc. 2021;35(10):5729–39.

    Article  PubMed  Google Scholar 

  25. Ankersmit M, van Dam DA, van Rijswijk AS, van den Heuvel B, Tuynman JB, Meijerink W. Fluorescent imaging with indocyanine green during laparoscopic cholecystectomy in patients at increased risk of bile duct injury. Surg Innov. 2017;24(3):245–52. https://doi.org/10.1177/1553350617690309.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Boogerd LSF, Handgraaf HJM, Huurman VAL, Lam HD, Mieog JSD, van der Made WJ, et al. The best approach for laparoscopic fluorescence cholangiography: overview of the literature and optimization of dose and dosing time. Surg Innov. 2017;24(4):386–96. https://doi.org/10.1177/1553350617702311.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Verbeek FP, Schaafsma BE, Tummers QR, van der Vorst JR, van der Made WJ, Baeten CI, et al. Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgery. Surg Endosc. 2014;28(4):1076–82. https://doi.org/10.1007/s00464-013-3305-9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Strasberg SM, Brunt LM. Rationale and use of the critical view of safety in laparoscopic cholecystectomy. J Am Coll Surg. 2010;211(1):132–8.

    Article  PubMed  Google Scholar 

  29. Lim SH, Tan HTA, Shelat VG. Comparison of indocyanine green dye fluorescent cholangiography with intra-operative cholangiography in laparoscopic cholecystectomy: a meta-analysis. Surg Endosc. 2021;35(4):1511–20. https://doi.org/10.1007/s00464-020-08164-5.

    Article  PubMed  Google Scholar 

  30. Turcotte J, Leydorf SD, Ali M, Feather C, Klune JR. Indocyanine green does not decrease the need for bail-out operation in an acute care surgery population. Surgery. 2021;169(2):227–31. https://doi.org/10.1016/j.surg.2020.05.045.

    Article  PubMed  Google Scholar 

  31. Bryski MG, Frenzel Sulyok LG, Kaplan L, Singhal S, Keating JJ. Techniques for intraoperative evaluation of bowel viability in mesenteric ischemia: a review. Am J Surg. 2020;220(2):309–15. https://doi.org/10.1016/j.amjsurg.2020.01.042.

    Article  PubMed  Google Scholar 

  32. Tilsed JV, Casamassima A, Kurihara H, Mariani D, Martinez I, Pereira J, et al. ESTES guidelines: acute mesenteric ischaemia. Eur J Trauma Emerg Surg. 2016;42(2):253–70. https://doi.org/10.1007/s00068-016-0634-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adaba F, Askari A, Dastur J, Patel A, Gabe SM, Vaizey CJ, et al. Mortality after acute primary mesenteric infarction: a systematic review and meta-analysis of observational studies. Color Dis. 2015;17(7):566–77. https://doi.org/10.1111/codi.12938.

    Article  CAS  Google Scholar 

  34. Szoka N, Kahn M. Acute-on-chronic mesenteric ischemia: the use of fluorescence guidance to diagnose a nonsurvivable injury. Case Rep Surg. 2022;2022:5459774. https://doi.org/10.1155/2022/5459774.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Son GM, Kwon MS, Kim Y, Kim J, Kim SH, Lee JW. Quantitative analysis of colon perfusion pattern using indocyanine green (ICG) angiography in laparoscopic colorectal surgery. Surg Endosc. 2019;33(5):1640–9. https://doi.org/10.1007/s00464-018-6439-y.

    Article  PubMed  Google Scholar 

  36. Mehdorn M, Ebel S, Kohler H, Gockel I, Jansen-Winkeln B. Hyperspectral imaging and indocyanine green fluorescence angiography in acute mesenteric ischemia: a case report on how to visualize intestinal perfusion. Int J Surg Case Rep. 2021;82:105853. https://doi.org/10.1016/j.ijscr.2021.105853.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nakagawa Y, Kobayashi K, Kuwabara S, Shibuya H, Nishimaki T. Use of indocyanine green fluorescence imaging to determine the area of bowel resection in non-occlusive mesenteric ischemia: a case report. Int J Surg Case Rep. 2018;51:352–7. https://doi.org/10.1016/j.ijscr.2018.09.024.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Irie T, Matsutani T, Hagiwara N, Nomura T, Fujita I, Kanazawa Y, et al. Successful treatment of non-occlusive mesenteric ischemia with indocyanine green fluorescence and open-abdomen management. Clin J Gastroenterol. 2017;10(6):514–8. https://doi.org/10.1007/s12328-017-0779-3.

    Article  PubMed  Google Scholar 

  39. Nitori N, Deguchi T, Kubota K, Yoshida M, Kato A, Kojima M, et al. Successful treatment of non-occlusive mesenteric ischemia (NOMI) using the HyperEye Medical System™ for intraoperative visualization of the mesenteric and bowel circulation: report of a case. Surg Today. 2014;44(2):359–62. https://doi.org/10.1007/s00595-013-0503-y.

    Article  PubMed  Google Scholar 

  40. Guerra F, Coletta D, Greco PA, Eugeni E, Patriti A. The use of indocyanine green fluorescence to define bowel microcirculation during laparoscopic surgery for acute small bowel obstruction. Color Dis. 2021;23(8):2189–94. https://doi.org/10.1111/codi.15680.

    Article  Google Scholar 

  41. Ryu S, Hara K, Goto K, Okamoto A, Kitagawa T, Marukuchi R, et al. Fluorescence angiography vs. direct palpation for bowel viability evaluation with strangulated bowel obstruction. Langenbeck’s Arch Surg. 2021;407:797. https://doi.org/10.1007/s00423-021-02358-8.

    Article  Google Scholar 

  42. Daskalopoulou D, Kankam J, Plambeck J, Ambe PC, Zarras K. Intraoperative real-time fluorescence angiography with indocyanine green for evaluation of intestinal viability during surgery for an incarcerated obturator hernia: a case report. Patient Saf Surg. 2018;12:24. https://doi.org/10.1186/s13037-018-0173-1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Karampinis IA-O, Keese M, Jakob J, Stasiunaitis V, Gerken A, Attenberger U, et al. Indocyanine green tissue angiography can reduce extended bowel resections in acute mesenteric ischemia. J Gastrointest Surg. 2018;22(12):2117–24.

    Article  PubMed  Google Scholar 

  44. Wongkietkachorn A, Surakunprapha P, Winaikosol K, Waraasawapati S, Chaiwiriyakul S, Eua-Angkanakul K, Wongkietkachorn N, et al. Indocyanine green dye angiography as an adjunct to assess indeterminate burn wounds: a prospective, multicentered, triple-blinded study. J Trauma Acute Care Surg. 2019;86(5):823–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Miller G, Boman J, Shrier I, Gordon PH. Etiology of small bowel obstruction. Am J Surg. 2000;180(1):33–6. https://doi.org/10.1016/s0002-9610(00)00407-4.

    Article  CAS  PubMed  Google Scholar 

  46. Pekmezci S, Saribeyoglu K, Korman U. Guidelines for management of small bowel obstruction. J Trauma. 2009;66(4):1262. https://doi.org/10.1097/TA.0b013e318198d6a2.

    Article  PubMed  Google Scholar 

  47. Hernandez MC, Haddad NN, Cullinane DC, Yeh DD, Wydo S, Inaba K, et al. The American Association for the Surgery of Trauma Severity Grade is valid and generalizable in adhesive small bowel obstruction. J Trauma Acute Care Surg. 2018;84(2):372.

    Article  PubMed  Google Scholar 

  48. Nakashima KA-O, Ryu S, Okamoto A, Hara K, Ishida K, Ito R, et al. Intestinal blood flow evaluation using the indocyanine green fluorescence imaging method in a case of incarcerated obturator hernia: a case report. Asian J Endosc Surg. 2021;14(3):565–9.

    Article  PubMed  Google Scholar 

  49. Nakashima K, Ryu S, Okamoto A, Hara K, Ishida K, Ito R, et al. Usefulness of blood flow evaluation with indocyanine green fluorescence imaging during laparoscopic surgery for strangulated bowel obstruction: a cohort study. Asian J Surg. 2021;45:867. https://doi.org/10.1016/j.asjsur.2021.08.020.

    Article  PubMed  Google Scholar 

  50. Urbanavičius L, Pattyn P, de Putte DV, Venskutonis D. How to assess intestinal viability during surgery: a review of techniques. World J Gastrointest Surg. 2011;3(5):59–69. https://doi.org/10.4240/wjgs.v3.i5.59.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Choudhry AJ, Haddad NN, Rivera M, Morris DS, Zietlow SP, Schiller HJ, et al. Medical malpractice in the management of small bowel obstruction: a 33-year review of case law. Surgery. 2016;160(4):1017–27. https://doi.org/10.1016/j.surg.2016.06.031.

    Article  PubMed  Google Scholar 

  52. Mathew R. Caution warranted in use of indocyanine green fluorescence in laparoscopic evaluation of microcirculation in acute small bowel obstruction. Color Dis. 2021;23(9):2472. https://doi.org/10.1111/codi.15757.

    Article  CAS  Google Scholar 

  53. Matsui A, Winer JH, Laurence RG, Frangioni JV. Predicting the survival of experimental ischaemic small bowel using intraoperative near-infrared fluorescence angiography. Br J Surg. 2011;98(12):1725–34. https://doi.org/10.1002/bjs.7698.

    Article  CAS  PubMed  Google Scholar 

  54. Iinuma Y, Hirayama Y, Yokoyama N, Otani T, Nitta K, Hashidate H, et al. Intraoperative near-infrared indocyanine green fluorescence angiography (NIR-ICG AG) can predict delayed small bowel stricture after ischemic intestinal injury: report of a case. J Pediatr Surg. 2013;48(5):1123–8. https://doi.org/10.1016/j.jpedsurg.2013.03.067.

    Article  PubMed  Google Scholar 

  55. Trauma TAAftSo: AAST - trauma facts. 2022. https://www.aast.org/resources/trauma-facts. Accessed 2022.

  56. Kohno T, Miki T, Hayashi K. Choroidopathy after blunt trauma to the eye: a fluorescein and indocyanine green angiographic study. Am J Ophthalmol. 1998;126(2):248–60. https://doi.org/10.1016/s0002-9394(98)00153-6.

    Article  CAS  PubMed  Google Scholar 

  57. Afifi I, Abdelrahman H, El-Faramawy A, Mahmood I, Khoschnau S, Al-Naimi N, et al. The use of Indocyanine green fluorescent in patients with abdominal trauma for better intraoperative decision-making and less bowel anastomosis leak: case series. J Surg Case Rep. 2021;2021(6):rjab235. https://doi.org/10.1093/jscr/rjab235.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kamolz L-P, Andel H, Auer T, Meissl G, Frey M. Evaluation of skin perfusion by use of indocyanine green video angiography: rational design and planning of trauma surgery. J Trauma Acute Care Surg. 2006;61(3):635.

    Article  Google Scholar 

  59. Ganau M, Iqbal M, Ligarotti GKI, Syrmos N. Breakthrough in the assessment of cerebral perfusion and vascular permeability after brain trauma through the adoption of dynamic indocyanine green-enhanced near-infrared spectroscopy. Quant Imaging Med Surg. 2020;10(11):2081–4. https://doi.org/10.21037/qims-20-905.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Forcione M, Chiarelli AM, Davies DJ, Perpetuini D, Sawosz P, Merla A, et al. Cerebral perfusion and blood–brain barrier assessment in brain trauma using contrast-enhanced near-infrared spectroscopy with indocyanine green: a review. J Cereb Blood Flow Metab. 2020;40(8):1586–98. https://doi.org/10.1177/0271678X20921973.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pruimboom T, Schols RM, Van Kuijk SMJ, Van der Hulst R, Qiu SS. Indocyanine green angiography for preventing postoperative mastectomy skin flap necrosis in immediate breast reconstruction. Cochrane Database Syst Rev. 2020;4:CD013280. https://doi.org/10.1002/14651858.CD013280.pub2.

    Article  PubMed  Google Scholar 

  62. Liu EH, Zhu SL, Hu J, Wong N, Farrokhyar F, Thoma A. Intraoperative SPY reduces post-mastectomy skin flap complications: a systematic review and meta-analysis. Plast Reconstr Surg Glob Open. 2019;7(4):e2060-e. https://doi.org/10.1097/GOX.0000000000002060.

    Article  Google Scholar 

  63. Green JM 3rd, Sabino J, Fleming M, Valerio I. Intraoperative fluorescence angiography: a review of applications and outcomes in war-related trauma. Mil Med. 2015;180(3 Suppl):37–43. https://doi.org/10.7205/MILMED-D-14-00632.

    Article  PubMed  Google Scholar 

  64. Wongkietkachorn A, Surakunprapha P, Winaikosol K, Waraasawapati S, Chaiwiriyakul S, Eua-angkanakul K, et al. Indocyanine green dye angiography as an adjunct to assess indeterminate burn wounds: a prospective, multicentered, triple-blinded study. J Trauma Acute Care Surgery. 2019;86(5):823.

    Article  Google Scholar 

  65. Wongkietkachorn A, Surakunprapha P, Jenwitheesuk K, Eua-Angkanakul K, Winaikosol K, Punyavong P, et al. Indocyanine green angiography precise marking for indeterminate burn excision: a prospective, multi-centered, double-blinded study. Plast Reconstr Surg Glob Open. 2021;9(4):e3538. https://doi.org/10.1097/GOX.0000000000003538.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Singh R, Rymer B, Youssef B, Lim J. The Morel-Lavallee lesion and its management: a review of the literature. J Orthop. 2018;15(4):917–21. https://doi.org/10.1016/j.jor.2018.08.032.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sen CK, Ghatak S, Gnyawali SC, Roy S, Gordillo GM. Cutaneous imaging technologies in acute burn and chronic wound care. Plast Reconstr Surg. 2016;138(3 Suppl):119S–28S. https://doi.org/10.1097/PRS.0000000000002654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fang C, Wang K, Zeng C, Chi C, Shang W, Ye J, et al. Illuminating necrosis: from mechanistic exploration to preclinical application using fluorescence molecular imaging with indocyanine green. Sci Rep. 2016;6:21013. https://doi.org/10.1038/srep21013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nova Szoka .

Editor information

Editors and Affiliations

Ethics declarations

Dr. Szoka is the founder of Endolumik Inc.

Electronic Supplementary Material

Video of ICG cholangiography, showing real-time opacification of cystic artery. (Video length 33 s, Image source Nova Szoka MD FACS) (MP4 79866 kb)

Video of ICG angiography, demonstrating difference in ICG uptake between ischemic and healthy small bowel. (Video length 27 s, Image source Nova Szoka MD FACS) (MP4 40495 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tham, E., Knight, J., Szoka, N. (2023). Use of Fluorescence Guidance in Acute Care Surgery and Trauma. In: Szoka, N., Renton, D., Horgan, S. (eds) The SAGES Manual of Fluorescence-Guided Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-40685-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40685-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40684-3

  • Online ISBN: 978-3-031-40685-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics