Abstract
Telecommunication and power infrastructures are located in hard to reach environments and exposed to extreme weather conditions. As such, dedicated personnel is set to conduct inspections on a regular basis to maintain the quality of these critical infrastructure networks. However, these inspections are costly and usually pose significant risks to personnel. Hence, UAVs have found flourishing ground in the area of infrastructure inspection. In this chapter, we introduce UAV inspection requirements and propose MELETI, a system architecture that investigates how UAVs can be used to enable autonomous infrastructure inspection through innovative intelligent systems and machine learning algorithms. Finally, several infrastructure inspection challenges that implement MELETI are introduced on both power and telecommunication infrastructure inspection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Matikainen, L., Lehtomäki, M., Ahokas, E., Hyyppä, J., Karjalainen, M., Jaakkola, A., Kukko, A., Heinonen, T.: Remote sensing methods for power line corridor surveys. ISPRS J. Photogramm. Remote Sens. 119, 10–31 (2016). https://doi.org/10.1016/j.isprsjprs.2016.04.011
Kahan, A.: Global electricity consumption continues to rise faster than population. https://www.eia.gov/todayinenergy/detail.php?id=44095 (2021)
Alhassan, A.B., Zhang, X., Shen, H., Xu, H.: Power transmission line inspection robots: A review, trends and challenges for future research. Int. J. Electr. Power Energy Syst. 118, 105862 (2020). https://doi.org/10.1016/j.ijepes.2020.105862
Nguyen, V.N., Jenssen, R., Roverso, D.: Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning. Int. J. Electr. Power Energy Syst. 99, 107–120 (2018). https://doi.org/10.1016/j.ijepes.2017.12.016
Bruch, M., Münch, V., Aichinger, M., Kuhn, M., Weymann, M., Schmid, G.: Power Blackout Risks. https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf (2011)
Klinger, C., Landeg, O., Murray, V.: Power outages, extreme events and health: a systematic review of the literature from 2011–2012. Public Libr. Sci. (2014). https://doi.org/10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673
Katrasnik, J., Pernus, F., Likar, B.: A Survey of Mobile Robots for Distribution Power Line Inspection. IEEE Trans. Power Delivery 25(1), 485–493 (2010). https://doi.org/10.1109/TPWRD.2009.2035427
Taheri, P., Mansouri, A.: Inspection and mitigation of underground corrosion at anchor shafts of telecommunication towers. In: NACE Corrosion 2017 Conference (2017)
Hui, X., Bian, J., Yu, Y., Zhao, X., Tan, M.: A novel autonomous navigation approach for UAV power line inspection. In: 2017 IEEE International Conference on Robotics and Biomimetics, pp. 1–6 (2018). https://doi.org/10.1109/ROBIO.2017.8324488
Bian, J., Hui, X., Zhao, X., Tan, M.: A Novel Monocular-Based Navigation Approach for UAV Autonomous Transmission-Line Inspection. In: IEEE International Conference on Intelligent Robots and Systems, pp. 6207–6213 (2018). https://doi.org/10.1109/IROS.2018.8593926
Zhao, X., Tan, M., Hui, X., Bian, J.: Deep-learning-based autonomous navigation approach for UAV transmission line inspection. In: Proceedings of the 2018 10th International Conference on Advanced Computational Intelligence, pp. 455–460 (2018). https://doi.org/10.1109/ICACI.2018.8377502
Hui, X., Bian, J., Zhao, x., Tan, M.: Vision-based autonomous navigation approach for unmanned aerial vehicle transmission-line inspection. Int. J. Adv. Robot. Syst. 15(1), 172988141775282 (2018). https://doi.org/10.1177/1729881417752821
Savva, A., Zacharia, A., Makrigiorgis, R., Anastasiou, A., Kyrkou, C., Kolios, P., Panayiotou, C., Theocharides, T.: ICARUS: Automatic Autonomous Power Infrastructure Inspection with UAVs. In: Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 918–926 (2021). https://doi.org/10.1109/ICUAS51884.2021.9476742
Martinez, C., Sampedro, P.C., Chauhan, A., Collumeau, J.F., Campoy, P.: The Power Line Inspection Software (PoLIS): A versatile system for automating power line inspection. Eng. Appl. Artif. Intell. 71, 293 (2018). https://doi.org/10.1016/j.engappai.2018.02.008
McFadyen, A., Dayoub, F., Martin, S., Ford, J., Corke, P.: Assisted Control for Semi-autonomous Power Infrastructure Inspection using Aerial Vehicles. CoRR arXiv (2018). https://doi.org/10.48550/ARXIV.1804.02154
Barreiro, A.C., Seibold, C., Hilsmann, A., Eisert, P.: Automated Damage Inspection of Power Transmission Towers from UAV Images. CoRR arXiv (2021). https://doi.org/10.48550/ARXIV.2111.15581
Han, B., Wang, X.: Detection for Power line Inspection. MATEC Web of Conferences 100, 03010 (2017). https://doi.org/10.1051/matecconf/201710003010
Isa, M.F.M., Rahim, N.Z.A., Fathi, M.S.: It’s a bird…It’s a plane…It’s a drone…: Telecommunication Tower Inspection Using Drone. In: 2019 6th International Conference on Research and Innovation in Information Systems (ICRIIS), pp. 1–5 (2019). https://doi.org/10.1109/ICRIIS48246.2019.9073663
William DÃaz, M., José Cáceres, J.: A novel application of drones: thermal diagnosis of electrical and telecommunications infrastructure. In: 2018 IEEE 38th Central America and Panama Convention (CONCAPAN XXXVIII), pp. 1–6 (2018). https://doi.org/10.1109/CONCAPAN.2018.8596591
Zhai, Y., Ke, Q., Xu, Y., D, W., Gan, J., Zeng, J., Zhou, W., Scotti, F., Labati, R.D., Piuri, V.: Mobile Communication Base Station Antenna Measurement Using Unmanned Aerial Vehicle. IEEE Access 7, 119892–119903 (2019). https://doi.org/10.1109/ACCESS.2019.2935613
Zhai, Y., Ke, Q., Liu, X., Zhou, W., Xu, Y., Ying, Z., Gan, J., Zeng, J., Labati, R.D., Piuri, V., Scotti, F.: AntennaNet: Antenna Parameters Measuring Network for Mobile Communication Base Station Using UAV. IEEE Trans. Instrum. Meas. 70, 1–17 (2021). https://doi.org/10.1109/TIM.2021.3058980
Fondevik, S.K., Stahl, A., Transeth, A.A., Knudsen, O.Ø.: Image Segmentation of Corrosion Damages in Industrial Inspections. In: 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 787–792 (2020). https://doi.org/10.1109/ICTAI50040.2020.00125
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V. Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P. Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Jin, Y., Vannella, F., Bouton, M., Jeong, J., Hakim, E.A.: A Graph Attention Learning Approach to Antenna Tilt Optimization. arXiv preprint (2021). arXiv:2112.14843
Dandanov, N., Samal, S.R., Bandopadhaya, S., Poulkov, V., Tonchev, K., Koleva, P.: Comparison of Wireless Channels for Antenna Tilt Based Coverage and Capacity Optimization. In: 2018 Global Wireless Summit (GWS), pp. 119–123 (2018). https://doi.org/10.1109/GWS.2018.8686597
Dandanov, N., Al-Shatri, H., Klein, A., Poulkov, V.: Dynamic Self-Optimization of the Antenna Tilt for Best Trade-off Between Coverage. Wirel. Pers. Commun. 92, 251–278 (2017). https://doi.org/10.1007/s11277-016-3849-9
Zhong, B., Ao, K.: Single-Stage Rotation-Decoupled Detector for Oriented Object. Remote Sens. 12(19), 3262 (2020). https://doi.org/10.3390/rs12193262
Szeliski, R.: Computer Vision: Algorithms and Applications (1st edn.). Springer, Berlin, Chapter 12 (2022)
Poggi, M., Tosi, F., Batsos, K., Mordohai, P., Mattoccia, S.: On the synergies between machine learning and stereo: a survey. arXiv preprint (2021) arXiv: 2004.08566
Hadjitheophanous, S., Ttofis, C., Georghiades, A.S., Theocharides, T.: Towards hardware stereoscopic 3D reconstruction a real-time FPGA computation of the disparity map. In: 2010 Design, Automation and Test in Europe Conference and Exhibition, pp. 1743–1748 (2010). https://doi.org/10.1109/DATE.2010.5457096
Ttofis, C., Hadjitheophanou, S., Georghiades, A.S., Theocharides, T.: Edge-Directed Hardware Architecture for Real-Time Disparity Map Computation. IEEE Trans. Comput. 62(4), 690–704 (2013). https://doi.org/10.1109/TC.2012.32
Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 993–1008 (2003). https://doi.org/10.1109/TPAMI.2003.1217603
Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal: Software Tools for the Professional Programmer, 25(11), 120–123 (2000)
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94
Bay, H., Tuytelaars, T., Gool, L.V.: SURF: Speeded up robust features. Springer, Berlin, pp. 404–417 (2006)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571 (2011). https://doi.org/10.1109/ICCV.2011.6126544
Fernández Alcantarilla, P., Bartoli, A., Davison, A.: KAZE Features. In: European Conference on Computer Vision (2012) https://doi.org/10.1007/978-3-642-33783-3_16
Fernández Alcantarilla, P.: Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. In: British Machine Vision Conference (2013). https://doi.org/10.5244/C.27.13
Verucchi, M., Brilli, G., Sapienza, D., Verasani, M., Arena, M., Gatti, F., Capotondi, A., Cavicchioli, R., Bertogna, M., Solieri, M.: A Systematic Assessment of Embedded Neural Networks for Object Detection. In: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) 1, 937–944 (2020)
Redmon, J.: Darknet: Open Source Neural Networks in C (2013–2016). http://pjreddie.com/darknet/
Acknowledgements
This work has been supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739551 (KIOS CoE) and from the Government of the Republic of Cyprus through the Directorate General for European Programmes, Coordination and Development. We would like to thank Electricity Authority of Cyprus (EAC) and Cyprus Telecommunication Authority (CYTA) for providing the locations to acquire data used in the present study, Antreas Anastasiou and Petros Petrides for assisting in data acquisition.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Pafitis, M., Savva, A., Kyrkou, C., Kolios, P., Theocharides, T. (2024). MELETI: A Machine-Learning-Based Embedded System Architecture for Infrastructure Inspection with UAVs. In: Pasricha, S., Shafique, M. (eds) Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-40677-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-40677-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-40676-8
Online ISBN: 978-3-031-40677-5
eBook Packages: EngineeringEngineering (R0)