Skip to main content

MELETI: A Machine-Learning-Based Embedded System Architecture for Infrastructure Inspection with UAVs

  • Chapter
  • First Online:
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing

Abstract

Telecommunication and power infrastructures are located in hard to reach environments and exposed to extreme weather conditions. As such, dedicated personnel is set to conduct inspections on a regular basis to maintain the quality of these critical infrastructure networks. However, these inspections are costly and usually pose significant risks to personnel. Hence, UAVs have found flourishing ground in the area of infrastructure inspection. In this chapter, we introduce UAV inspection requirements and propose MELETI, a system architecture that investigates how UAVs can be used to enable autonomous infrastructure inspection through innovative intelligent systems and machine learning algorithms. Finally, several infrastructure inspection challenges that implement MELETI are introduced on both power and telecommunication infrastructure inspection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Matikainen, L., Lehtomäki, M., Ahokas, E., Hyyppä, J., Karjalainen, M., Jaakkola, A., Kukko, A., Heinonen, T.: Remote sensing methods for power line corridor surveys. ISPRS J. Photogramm. Remote Sens. 119, 10–31 (2016). https://doi.org/10.1016/j.isprsjprs.2016.04.011

    Article  Google Scholar 

  2. Kahan, A.: Global electricity consumption continues to rise faster than population. https://www.eia.gov/todayinenergy/detail.php?id=44095 (2021)

  3. Alhassan, A.B., Zhang, X., Shen, H., Xu, H.: Power transmission line inspection robots: A review, trends and challenges for future research. Int. J. Electr. Power Energy Syst. 118, 105862 (2020). https://doi.org/10.1016/j.ijepes.2020.105862

    Article  Google Scholar 

  4. Nguyen, V.N., Jenssen, R., Roverso, D.: Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning. Int. J. Electr. Power Energy Syst. 99, 107–120 (2018). https://doi.org/10.1016/j.ijepes.2017.12.016

    Article  Google Scholar 

  5. Bruch, M., Münch, V., Aichinger, M., Kuhn, M., Weymann, M., Schmid, G.: Power Blackout Risks. https://www.thecroforum.org/wp-content/uploads/2012/09/CRO-Position-Paper-Power-Blackout-Risks-1-1.pdf (2011)

  6. Klinger, C., Landeg, O., Murray, V.: Power outages, extreme events and health: a systematic review of the literature from 2011–2012. Public Libr. Sci. (2014). https://doi.org/10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673

  7. Katrasnik, J., Pernus, F., Likar, B.: A Survey of Mobile Robots for Distribution Power Line Inspection. IEEE Trans. Power Delivery 25(1), 485–493 (2010). https://doi.org/10.1109/TPWRD.2009.2035427

    Article  Google Scholar 

  8. Taheri, P., Mansouri, A.: Inspection and mitigation of underground corrosion at anchor shafts of telecommunication towers. In: NACE Corrosion 2017 Conference (2017)

    Google Scholar 

  9. Hui, X., Bian, J., Yu, Y., Zhao, X., Tan, M.: A novel autonomous navigation approach for UAV power line inspection. In: 2017 IEEE International Conference on Robotics and Biomimetics, pp. 1–6 (2018). https://doi.org/10.1109/ROBIO.2017.8324488

  10. Bian, J., Hui, X., Zhao, X., Tan, M.: A Novel Monocular-Based Navigation Approach for UAV Autonomous Transmission-Line Inspection. In: IEEE International Conference on Intelligent Robots and Systems, pp. 6207–6213 (2018). https://doi.org/10.1109/IROS.2018.8593926

  11. Zhao, X., Tan, M., Hui, X., Bian, J.: Deep-learning-based autonomous navigation approach for UAV transmission line inspection. In: Proceedings of the 2018 10th International Conference on Advanced Computational Intelligence, pp. 455–460 (2018). https://doi.org/10.1109/ICACI.2018.8377502

  12. Hui, X., Bian, J., Zhao, x., Tan, M.: Vision-based autonomous navigation approach for unmanned aerial vehicle transmission-line inspection. Int. J. Adv. Robot. Syst. 15(1), 172988141775282 (2018). https://doi.org/10.1177/1729881417752821

  13. Savva, A., Zacharia, A., Makrigiorgis, R., Anastasiou, A., Kyrkou, C., Kolios, P., Panayiotou, C., Theocharides, T.: ICARUS: Automatic Autonomous Power Infrastructure Inspection with UAVs. In: Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 918–926 (2021). https://doi.org/10.1109/ICUAS51884.2021.9476742

  14. Martinez, C., Sampedro, P.C., Chauhan, A., Collumeau, J.F., Campoy, P.: The Power Line Inspection Software (PoLIS): A versatile system for automating power line inspection. Eng. Appl. Artif. Intell. 71, 293 (2018). https://doi.org/10.1016/j.engappai.2018.02.008

    Article  Google Scholar 

  15. McFadyen, A., Dayoub, F., Martin, S., Ford, J., Corke, P.: Assisted Control for Semi-autonomous Power Infrastructure Inspection using Aerial Vehicles. CoRR arXiv (2018). https://doi.org/10.48550/ARXIV.1804.02154

  16. Barreiro, A.C., Seibold, C., Hilsmann, A., Eisert, P.: Automated Damage Inspection of Power Transmission Towers from UAV Images. CoRR arXiv (2021). https://doi.org/10.48550/ARXIV.2111.15581

  17. Han, B., Wang, X.: Detection for Power line Inspection. MATEC Web of Conferences 100, 03010 (2017). https://doi.org/10.1051/matecconf/201710003010

    Article  Google Scholar 

  18. Isa, M.F.M., Rahim, N.Z.A., Fathi, M.S.: It’s a bird…It’s a plane…It’s a drone…: Telecommunication Tower Inspection Using Drone. In: 2019 6th International Conference on Research and Innovation in Information Systems (ICRIIS), pp. 1–5 (2019). https://doi.org/10.1109/ICRIIS48246.2019.9073663

  19. William Díaz, M., José Cáceres, J.: A novel application of drones: thermal diagnosis of electrical and telecommunications infrastructure. In: 2018 IEEE 38th Central America and Panama Convention (CONCAPAN XXXVIII), pp. 1–6 (2018). https://doi.org/10.1109/CONCAPAN.2018.8596591

  20. Zhai, Y., Ke, Q., Xu, Y., D, W., Gan, J., Zeng, J., Zhou, W., Scotti, F., Labati, R.D., Piuri, V.: Mobile Communication Base Station Antenna Measurement Using Unmanned Aerial Vehicle. IEEE Access 7, 119892–119903 (2019). https://doi.org/10.1109/ACCESS.2019.2935613

    Article  Google Scholar 

  21. Zhai, Y., Ke, Q., Liu, X., Zhou, W., Xu, Y., Ying, Z., Gan, J., Zeng, J., Labati, R.D., Piuri, V., Scotti, F.: AntennaNet: Antenna Parameters Measuring Network for Mobile Communication Base Station Using UAV. IEEE Trans. Instrum. Meas. 70, 1–17 (2021). https://doi.org/10.1109/TIM.2021.3058980

    Google Scholar 

  22. Fondevik, S.K., Stahl, A., Transeth, A.A., Knudsen, O.Ø.: Image Segmentation of Corrosion Damages in Industrial Inspections. In: 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 787–792 (2020). https://doi.org/10.1109/ICTAI50040.2020.00125

  23. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V. Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P. Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Jin, Y., Vannella, F., Bouton, M., Jeong, J., Hakim, E.A.: A Graph Attention Learning Approach to Antenna Tilt Optimization. arXiv preprint (2021). arXiv:2112.14843

    Google Scholar 

  25. Dandanov, N., Samal, S.R., Bandopadhaya, S., Poulkov, V., Tonchev, K., Koleva, P.: Comparison of Wireless Channels for Antenna Tilt Based Coverage and Capacity Optimization. In: 2018 Global Wireless Summit (GWS), pp. 119–123 (2018). https://doi.org/10.1109/GWS.2018.8686597

  26. Dandanov, N., Al-Shatri, H., Klein, A., Poulkov, V.: Dynamic Self-Optimization of the Antenna Tilt for Best Trade-off Between Coverage. Wirel. Pers. Commun. 92, 251–278 (2017). https://doi.org/10.1007/s11277-016-3849-9

    Article  Google Scholar 

  27. Zhong, B., Ao, K.: Single-Stage Rotation-Decoupled Detector for Oriented Object. Remote Sens. 12(19), 3262 (2020). https://doi.org/10.3390/rs12193262

    Article  Google Scholar 

  28. Szeliski, R.: Computer Vision: Algorithms and Applications (1st edn.). Springer, Berlin, Chapter 12 (2022)

    Google Scholar 

  29. Poggi, M., Tosi, F., Batsos, K., Mordohai, P., Mattoccia, S.: On the synergies between machine learning and stereo: a survey. arXiv preprint (2021) arXiv: 2004.08566

    Google Scholar 

  30. Hadjitheophanous, S., Ttofis, C., Georghiades, A.S., Theocharides, T.: Towards hardware stereoscopic 3D reconstruction a real-time FPGA computation of the disparity map. In: 2010 Design, Automation and Test in Europe Conference and Exhibition, pp. 1743–1748 (2010). https://doi.org/10.1109/DATE.2010.5457096

  31. Ttofis, C., Hadjitheophanou, S., Georghiades, A.S., Theocharides, T.: Edge-Directed Hardware Architecture for Real-Time Disparity Map Computation. IEEE Trans. Comput. 62(4), 690–704 (2013). https://doi.org/10.1109/TC.2012.32

    Article  MathSciNet  MATH  Google Scholar 

  32. Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 993–1008 (2003). https://doi.org/10.1109/TPAMI.2003.1217603

    Article  Google Scholar 

  33. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal: Software Tools for the Professional Programmer, 25(11), 120–123 (2000)

    Google Scholar 

  34. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  35. Bay, H., Tuytelaars, T., Gool, L.V.: SURF: Speeded up robust features. Springer, Berlin, pp. 404–417 (2006)

    Google Scholar 

  36. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571 (2011). https://doi.org/10.1109/ICCV.2011.6126544

  37. Fernández Alcantarilla, P., Bartoli, A., Davison, A.: KAZE Features. In: European Conference on Computer Vision (2012) https://doi.org/10.1007/978-3-642-33783-3_16

  38. Fernández Alcantarilla, P.: Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. In: British Machine Vision Conference (2013). https://doi.org/10.5244/C.27.13

  39. Verucchi, M., Brilli, G., Sapienza, D., Verasani, M., Arena, M., Gatti, F., Capotondi, A., Cavicchioli, R., Bertogna, M., Solieri, M.: A Systematic Assessment of Embedded Neural Networks for Object Detection. In: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) 1, 937–944 (2020)

    Google Scholar 

  40. Redmon, J.: Darknet: Open Source Neural Networks in C (2013–2016). http://pjreddie.com/darknet/

Download references

Acknowledgements

This work has been supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739551 (KIOS CoE) and from the Government of the Republic of Cyprus through the Directorate General for European Programmes, Coordination and Development. We would like to thank Electricity Authority of Cyprus (EAC) and Cyprus Telecommunication Authority (CYTA) for providing the locations to acquire data used in the present study, Antreas Anastasiou and Petros Petrides for assisting in data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theocharis Theocharides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pafitis, M., Savva, A., Kyrkou, C., Kolios, P., Theocharides, T. (2024). MELETI: A Machine-Learning-Based Embedded System Architecture for Infrastructure Inspection with UAVs. In: Pasricha, S., Shafique, M. (eds) Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-40677-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40677-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40676-8

  • Online ISBN: 978-3-031-40677-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics