Skip to main content

Magnetic Properties of Inverse Spinel Fe3O4 Nano-Layer: A Monte Carlo Study

  • Chapter
  • First Online:
Electronic, Magnetic, and Thermoelectric Properties of Spinel Ferrite Systems

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 90 Accesses

Abstract

Using Monte Carlo simulation, with free boundary conditions along the L direction the impact of film thickness on the magnetic characteristics of inverse spinel \(\left( {Fe_{{}}^{3 + } } \right)\left[ {Fe^{3 + } Fe^{2 + } } \right]O_{4}^{2 - }\) has been investigated. Up to Lā€‰=ā€‰13, the critical temperature has been determined for various film thicknesses. The magnetic hysteresis is obtained for various temperatures and film thicknesses. With an increase in film thickness and a reduction in temperature, the magnetic coercive field and remanent magnetization are both affected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Cullity, C.D. Graham, Introduction Magnetic Materials, 2nd edn. (Wiley, New Jersey, 2009)

    Google ScholarĀ 

  2. S. Chikazumi, Physics of Ferromagnetism, 2nd edn. (Oxford University, New York, 1996)

    Google ScholarĀ 

  3. P. Prieto, J.F. Marco, J.E. Prieto, S.R. Gomez et al., Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers. Appl. Surf. Sci. 436, 1067 (2018)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  4. F. Eskandari, P. Kameli, H. Salamati, Effect of laser pulse repetition rate on morphology and magnetic properties of cobalt ferrite films grown by pulsed laser deposition. Appl. Surf. Scie. 466, 215 (2019)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  5. M.A.G. Soler, L.G. Paterno, J. Sinnecker JP, Wen J.G., et al. Assembly of Ī³-Fe2O3/polyaniline nanofilms with tuned dipolar interaction. J. Nanopart. Res. 14, 653 (2012)

    Google ScholarĀ 

  6. R. Neumann, M. Bahiana, L. Paterno, M. Soler et al., On the magnetic properties of the multiferroic ceramicsĀ Bi0.99Y0.01Fe1-xNixO3Ā (0.01ā©½xā©½0.05). J. Magn. Magn. Mater. 347, 26 (2013)

    Google ScholarĀ 

  7. D.P. Landau, K. Binder, Monte Carlo study of surface phase transitions in the three-dimensional Ising model. Phys. Rev. B. 41, 4633 (1990)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  8. K. Binder, D.P. Landau, A.M. Ferrenberg, Character of the phase transition in thin Ising films with competing walls. Phys. Rev. Lett. 74, 298 (1995)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  9. Y. Laosiriataworn, J. Pouler, J.B. Staunton, Magnetic properties of Ising thin films with cubic lattices. Phys. Rev. B. 70, 104413 (2004)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  10. O. Iglesias, A. Valencia, A. Labarta, Monte Carlo simulation of the magnetic ordering in thin films with perpendicular anisotropy. J. Magn. Magn. Mater. 196ā€“197, 819 (1999)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  11. O. Iglesias, A. Labarta, Finite-size and surface effects in maghemite nanoparticles: monte Carlo simulations. Phys. Rev. B. 63, 184416 (2001)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  12. M. Uhl, B. Siberchicot, A first-principles study of exchange integrals in magnetite. J. Phys. Condens. Matter. 7, 4227 (1995)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  13. J. Mazo-Zuluaga, J. Restrepo, Magnetite thin films: a simulational approach. Physica. B. 384, 224 (2006)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  14. S.K. Sharma, S. Kumar, P. Thakur, A. Alimuddin et al., Irradiation induced texturing in the Mg0.95Mn0.05Fe2O4 ferrite thin film. Thin. Solid. Films. 517, 2758 (2009)

    Google ScholarĀ 

  15. M. Gomi, Pulsed laser deposition of magnetic oxide thin films for magnetic tunneling devices. J. Alloys. Compd. 326, 221 (2001)

    ArticleĀ  Google ScholarĀ 

  16. Z.M. Lu, N. Si, Y.N. Wang, F. Zhang et al., Unique magnetism in different sizes of center decorated tetragonal nanoparticles with the anisotropy. Physica A. 523, 438 (2019)

    Google ScholarĀ 

  17. Q. Hu, F. Zhang, W. Jiang, B. Zhang, A kind of nanofiber-enclosed nanoporous structure prepared through dealloying a Cuā€“Ti glassy film. J. Alloys. Compnds. 772, 1088 (2019)

    ArticleĀ  Google ScholarĀ 

  18. W. Jiang, J.N. Chen, B. Ma, Z. Wang, Surface effects on magnetic and thermodynamic properties in nanoscale multilayer ferrimagnetic films. Physica E. 61, 101 (2014)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  19. D. Lv, Y. Ma, W. Jiang et al., Magnetic and thermodynamic properties of a ferromagnetic mixed-spin (1/2, 1, 3/2) three-layer film superlattice. Superlatt. Microstruct. 119, 46 (2018)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  20. D.P. Landau, K. Binder, in: A Guide to Monte Carlo Simulations in Statistical Physics, (Cambridge University Press, Cambridge, 2000, p. 71)

    Google ScholarĀ 

  21. M.E.J. Newman, G.T. Barkema, in: Monte Carlo Methods in Statistical Physics, Clarendon Press, (Oxford, 1999, p. 46)

    Google ScholarĀ 

  22. C.C. Yang, Q. Jiang, Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals. Acta Mater. 53, 3305 (2005)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  23. R. Masrour, M. Hamedoun, A. Benyoussef, Phase transition in Ising, XY and Heisenberg magnetic films. Appl. Surf. Scie. 258, 1902 (2012)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  24. N.C. Bartelt, S. Nie, E. Starodub, I.B. Villamil et al., Order-disorder phase transition on the (100) surface of magnetite. Phys. Rev. B. 88, 235436 (2013)

    Google ScholarĀ 

  25. H.B. Braun, Kramersā€™s rate theory, broken symmetries, and magnetization reversal. J. Appl. Phys. 76, 6310 (1994)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  26. X.T. Tang, G.C. Wang, M. Shima, Superparamagnetic behavior in ultrathin CoNi layers of electrodeposited CoNiāˆ•CuCoNiāˆ•Cu multilayer nanowires. J. Appl. Phys. 99, 123910 (2006)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  27. M. Raghasudha, D. Ravinder, P. Veerasomaiah, Investigation of superparamagnetism in MgCr0.9Fe1.1O4 nano-ferrites synthesized by the Citrate-gel method. J. Magn. Magn. Mater. 355, 210 (2014)

    Google ScholarĀ 

  28. Holguƭn-Momaca, M.J.T. Rocƭo, G. PƩrez, A. Reyes-Rojas, Francisco Espinosa-MagaƱa, et al. Study of carbon-doped Mn3Ga thin films with enhanced magnetization. Intermetallics 104, 90 (2019)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Masrour .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masrour, R. (2023). Magnetic Properties of Inverse Spinel Fe3O4 Nano-Layer: A Monte Carlo Study. In: Electronic, Magnetic, and Thermoelectric Properties of Spinel Ferrite Systems. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-40613-3_6

Download citation

Publish with us

Policies and ethics