Skip to main content

Aging and the Vestibular System

  • Chapter
  • First Online:
Disorders of the Vestibular System

Abstract

Vestibular loss is highly prevalent in older adults and has important consequences in maintaining health with age. Age-related vestibular loss is a multifactorial, progressive, and bilateral sensory disorder characterized by peripheral and central age-related deficits. Clinicians can optimize balance-related health care in the older adult by recognizing the pathophysiologic, epidemiologic, and clinical presentation of the aging vestibular system. This chapter will first review the current understanding of the presentation and evaluation of the age-related vestibular loss in the United States to provide the context for understanding the unique needs of the older adult population. This chapter will then focus on the appropriate management of age-related vestibular loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vespa J, Armstrong DM, Medina L. Demographic turning points for the United States: population projections for 2020 to 2060 United States Census Bureau; 2020.

    Google Scholar 

  2. Creighton FX Jr, Poliashenko SM, Statham MM, et al. The growing geriatric otolaryngology patient population: a study of 131,700 new patient encounters. Laryngoscope. 2013;123(1):97–102.

    Article  PubMed  Google Scholar 

  3. Roberts DS, Lin HW, Bhattacharyya N. Health care practice patterns for balance disorders in the elderly. Laryngoscope. 2013;123(10):2539–43.

    Article  PubMed  Google Scholar 

  4. Correia C, Lopez KJ, Wroblewski KE, et al. Global sensory impairment in older adults in the United States. J Am Geriatr Soc. 2016;64(2):306–13.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Agrawal Y, Carey JP, Della Santina CC, et al. Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001–2004. Arch Intern Med. 2009;169(10):938–44.

    Article  PubMed  Google Scholar 

  6. Agrawal Y, Davalos-Bichara M, Zuniga MG, et al. Head impulse test abnormalities and influence on gait speed and falls in older individuals. Otol Neurotol. 2013;34(9):1729–35.

    Article  PubMed  Google Scholar 

  7. Semenov YR, Bigelow RT, Xue QL, et al. Association between vestibular and cognitive function in U.S. adults: data from the National Health and Nutrition Examination Survey. J Gerontol A Biol Sci Med Sci. 2016;71(2):243–50.

    Article  PubMed  Google Scholar 

  8. Agrawal Y, Pineault KG, Semenov YR. Health-related quality of life and economic burden of vestibular loss in older adults. Laryngoscope Investig Otolaryngol. 2018;3(1):8–15.

    Article  PubMed  Google Scholar 

  9. Bigelow RT, Semenov YR, du Lac S, et al. Vestibular vertigo and comorbid cognitive and psychiatric impairment: the 2008 National Health Interview Survey. J Neurol Neurosurg Psychiatry. 2016;87(4):367–72.

    Article  PubMed  Google Scholar 

  10. Baydan M, Caliskan H, Balam-Yavuz B, et al. The interaction between mild cognitive impairment with vestibulo-ocular reflex, dynamic visual acuity and postural balance in older adults. Exp Gerontol. 2020;130:110785.

    Article  PubMed  Google Scholar 

  11. Stevens KN, Lang IA, Guralnik JM, et al. Epidemiology of balance and dizziness in a national population: findings from the English Longitudinal Study of Ageing. Age Ageing. 2008;37(3):300–5.

    Article  PubMed  Google Scholar 

  12. Ekwall A, Lindberg A, Magnusson M. Dizzy - why not take a walk? Low level physical activity improves quality of life among elderly with dizziness. Gerontology. 2009;55(6):652–9.

    Article  PubMed  Google Scholar 

  13. Gopinath B, McMahon CM, Rochtchina E, et al. Dizziness and vertigo in an older population: the Blue Mountains prospective cross-sectional study. Clin Otolaryngol. 2009;34(6):552–6.

    Article  CAS  PubMed  Google Scholar 

  14. Lin HW, Bhattacharyya N. Balance disorders in the elderly: epidemiology and functional impact. Laryngoscope. 2012;122(8):1858–61.

    Article  PubMed  Google Scholar 

  15. Sato H, Sando I, Takahashi H. Computer-aided three-dimensional measurement of the human vestibular apparatus. Otolaryngol Head Neck Surg. 1992;107(3):405–9.

    Article  CAS  PubMed  Google Scholar 

  16. Li C, Layman AJ, Geary R, et al. Epidemiology of vestibulo-ocular reflex function: data from the Baltimore Longitudinal Study of Aging. Otol Neurotol. 2015;36(2):267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carnaúba AT, Farias VV, Santos N, et al. Influence of gender on the vestibular evoked myogenic potential. Braz J Otorhinolaryngol. 2011;77(2):245–8.

    Article  PubMed  Google Scholar 

  18. Jacob A, Tward DJ, Resnick S, et al. Vestibular function and cortical and sub-cortical alterations in an aging population. Heliyon. 2020;6(8):e04728.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Harris JP, Alexander TH. Current-day prevalence of Ménière’s syndrome. Audiol Neurootol. 2010;15(5):318–22.

    Article  PubMed  Google Scholar 

  20. Ohmen JD, White CH, Li X, et al. Genetic evidence for an ethnic diversity in the susceptibility to Ménière’s disease. Otol Neurotol. 2013;34(7):1336–41.

    Article  PubMed  Google Scholar 

  21. Simo H, Yang S, Qu W, et al. Meniere’s disease: importance of socioeconomic and environmental factors. Am J Otolaryngol. 2015;36(3):393–8.

    Article  PubMed  Google Scholar 

  22. Erbele ID, Lin FR, Agrawal Y, et al. Racial differences of pigmentation in the human vestibular organs. Otolaryngol Head Neck Surg. 2016;155(3):479–84.

    Article  PubMed  Google Scholar 

  23. Matiño-Soler E, Esteller-More E, Martin-Sanchez JC, et al. Normative data on angular vestibulo-ocular responses in the yaw axis measured using the video head impulse test. Otol Neurotol. 2015;36(3):466–71.

    Article  PubMed  Google Scholar 

  24. Mossman B, Mossman S, Purdie G, et al. Age dependent normal horizontal VOR gain of head impulse test as measured with video-oculography. J Otolaryngol Head Neck Surg. 2015;44(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hain TC, Cherchi M, Perez-Fernandez N. The gain-time constant product quantifies total vestibular output in bilateral vestibular loss. Front Neurol. 2018;9:396.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peters RM, Blouin JS, Dalton BH, et al. Older adults demonstrate superior vestibular perception for virtual rotations. Exp Gerontol. 2016;82:50–7.

    Article  PubMed  Google Scholar 

  27. Khan SI, Hübner PP, Brichta AM, et al. Aging reduces the high-frequency and short-term adaptation of the vestibulo-ocular reflex in mice. Neurobiol Aging. 2017;51:122–31.

    Article  PubMed  Google Scholar 

  28. Woodruff-Pak DS, Foy MR, Akopian GG, et al. Differential effects and rates of normal aging in cerebellum and hippocampus. Proc Natl Acad Sci U S A. 2010;107(4):1624–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang C, Zhu Q, Hua T. Aging of cerebellar Purkinje cells. Cell Tissue Res. 2010;341(3):341–7.

    Article  PubMed  Google Scholar 

  30. Agrawal Y, Zuniga MG, Davalos-Bichara M, et al. Decline in semicircular canal and otolith function with age. Otol Neurotol. 2012;33(5):832–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bigelow RT, Semenov YR, Trevino C, et al. Association between visuospatial ability and vestibular function in the Baltimore Longitudinal Study of Aging. J Am Geriatr Soc. 2015;63(9):1837–44.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xie YJ, Liu EY, Anson ER, et al. Age-related imbalance is associated with slower walking speed: an analysis from the National Health and Nutrition Examination Survey. J Geriatr Phys Ther. 2017;40(4):183–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xie Y, Bigelow RT, Frankenthaler SF, et al. Vestibular loss in older adults is associated with impaired spatial navigation: data from the Triangle Completion Task. Front Neurol. 2017;8:173.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liston MB, Bamiou DE, Martin F, et al. Peripheral vestibular dysfunction is prevalent in older adults experiencing multiple non-syncopal falls versus age-matched non-fallers: a pilot study. Age Ageing. 2014;43(1):38–43.

    Article  PubMed  Google Scholar 

  35. Layman AJ, Li C, Simonsick E, et al. Association between saccular function and gait speed: data from the Baltimore Longitudinal Study of Aging. Otol Neurotol. 2015;36(2):260–6.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Anson E, Pineault K, Bair W, et al. Reduced vestibular function is associated with longer, slower steps in healthy adults during normal speed walking. Gait Posture. 2019;68:340–5.

    Article  CAS  PubMed  Google Scholar 

  37. Bermúdez Rey MC, Clark TK, Wang W, et al. Vestibular perceptual thresholds increase above the age of 40. Front Neurol. 2016;7:162.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 10 Leading causes of injury deaths by age group highlighting unintentional injury deaths, United States – 2018. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2018.

    Google Scholar 

  39. Harun A, Semenov YR, Agrawal Y. Vestibular function and activities of daily living: analysis of the 1999 to 2004 National Health and Nutrition Examination Surveys. Gerontol Geriatr Med. 2015, 1:2333721415607124.

    Google Scholar 

  40. Harun A, Li C, Bridges JF, et al. Understanding the experience of age-related vestibular loss in older individuals: a qualitative study. Patient. 2016;9(4):303–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marchetti GF, Whitney SL, Redfern MS, et al. Factors associated with balance confidence in older adults with health conditions affecting the balance and vestibular system. Arch Phys Med Rehabil. 2011;92(11):1884–91.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Harvey RE, Rutan SA, Willey GR, et al. Linear self-motion cues support the spatial distribution and stability of hippocampal place cells. Curr Biol. 2018;28(11):1803–10.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wei EX, Agrawal Y. Vestibular dysfunction and difficulty with driving: data from the 2001–2004 National Health and Nutrition Examination Surveys. Front Neurol. 2017;8:557.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Harun A, Oh ES, Bigelow RT, et al. Vestibular impairment in dementia. Otol Neurotol. 2016;37(8):1137–42.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wei EX, Oh ES, Harun A, et al. Vestibular loss predicts poorer spatial cognition in patients with Alzheimer’s disease. J Alzheimers Dis. 2018;61(3):995–1003.

    Article  PubMed  Google Scholar 

  46. Domínguez MO, Magro JB. Bedside balance testing in elderly people. Curr Aging Sci. 2009;2(2):150–7.

    Article  PubMed  Google Scholar 

  47. Goman AM, Lin FR. Prevalence of hearing loss by severity in the United States. Am J Public Health. 2016;106(10):1820–2.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Parker IG, Hartel G, Paratz J, et al. A systematic review of the reported proportions of diagnoses for dizziness and vertigo. Otol Neurotol. 2019;40(1):6–15.

    Article  PubMed  Google Scholar 

  49. Oghalai JS, Manolidis S, Barth JL, et al. Unrecognized benign paroxysmal positional vertigo in elderly patients. Otolaryngol Head Neck Surg. 2000;122(5):630–4.

    Article  CAS  PubMed  Google Scholar 

  50. Havia M, Kentala E, Pyykkö I. Prevalence of Menière’s disease in general population of Southern Finland. Otolaryngol Head Neck Surg. 2005;133(5):762–8.

    Article  PubMed  Google Scholar 

  51. Shojaku H, Watanabe Y, Fujisaka M, et al. Epidemiologic characteristics of definite Ménière’s disease in Japan. A long-term survey of Toyama and Niigata prefectures. ORL J Otorhinolaryngol Relat Spec. 2005;67(5):305–9.

    Article  PubMed  Google Scholar 

  52. Agrawal Y, Van de Berg R, Wuyts F, et al. Presbyvestibulopathy: diagnostic criteria consensus document of the classification Committee of the Bárány Society. J Vestib Res. 2019;29(4):161–70.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kerber KA, Fendrick AM. The evidence base for the evaluation and management of dizziness. J Eval Clin Pract. 2010;16(1):186–91.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hain TC, Yacovino D. Pharmacologic treatment of persons with dizziness. Neurol Clin. 2005;23(3):831–53, vii.

    Article  PubMed  Google Scholar 

  55. Zee DS. Perspectives on the pharmacotherapy of vertigo. Arch Otolaryngol. 1985;111(9):609–12.

    Article  CAS  PubMed  Google Scholar 

  56. Hall CD, Herdman SJ, Whitney SL, et al. Vestibular rehabilitation for peripheral vestibular hypofunction: an evidence-based clinical practice guideline: from the American Physical Therapy Association Neurology Section. J Neurol Phys Ther. 2016;40(2):124–55.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hall CD, Heusel-Gillig L, Tusa RJ, et al. Efficacy of gaze stability exercises in older adults with dizziness. J Neurol Phys Ther. 2010;34(2):64–9.

    Article  PubMed  Google Scholar 

  58. Martins ESDC, Bastos VH, de Oliveira Sanchez M, et al. Effects of vestibular rehabilitation in the elderly: a systematic review. Aging Clin Exp Res. 2016;28(4):599–606.

    Article  Google Scholar 

  59. Balaban CD, Hoffer ME, Gottshall KR. Top-down approach to vestibular compensation: translational lessons from vestibular rehabilitation. Brain Res. 2012;1482:101–11.

    Article  CAS  PubMed  Google Scholar 

  60. Ricci NA, Aratani MC, Doná F, et al. A systematic review about the effects of the vestibular rehabilitation in middle-age and older adults. Rev Bras Fisioter. 2010;14(5):361–71.

    Article  PubMed  Google Scholar 

  61. Soto-Varela A, Faraldo-García A, Del-Río-Valeiras M, et al. Adherence of older people with instability in vestibular rehabilitation programmes: prediction criteria. J Laryngol Otol. 2017;131(3):232–8.

    Article  CAS  PubMed  Google Scholar 

  62. Deems DA, Deems RO, O’Malley BW Jr. Managing challenges in an aging vestibular system: rehabilitation strategies normalize balance function in a cohort of patients up to 99 years. Ear Nose Throat J. 2019;98(1):37–43.

    Article  PubMed  Google Scholar 

  63. Cucchiara R, Grana C, Piccardi M, et al. Detecting moving objects, ghosts, and shadows in video streams. IEEE Trans Pattern Anal Mach Intell. 2003;25(10):1337–42.

    Article  Google Scholar 

  64. Goffredo M, Schmid M, Conforto S, et al. A markerless sub-pixel motion estimation technique to reconstruct kinematics and estimate the centre of mass in posturography. Med Eng Phys. 2006;28(7):719–26.

    Article  PubMed  Google Scholar 

  65. Bächlin M, Plotnik M, Roggen D, et al. Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE Trans Inf Technol Biomed. 2010;14(2):436–46.

    Article  PubMed  Google Scholar 

  66. Bennebroek M, Barroso A, Atallah L, et al., editors. Deployment of wireless sensors for remote elderly monitoring. The 12th IEEE International Conference on e-Health Networking, Applications and Services; 2010. p. 1–3.

    Google Scholar 

  67. MacLellan G, Baillie L. Development of a location and movement monitoring system to quantify physical activity. In: CHI ‘08 Extended Abstracts on Human Factors in Computing Systems; Florence, Italy. Association for Computing Machinery; 2008. p. 2889–94.

    Chapter  Google Scholar 

  68. Matsushita S, editor. Signal processing algorithm and health care application for wearable sense of balance monitoring headphones. 2009 International Symposium on Wearable Computers; 4–7 Sept 2009.

    Google Scholar 

  69. Lee BC, Kim J, Chen S, et al. Cell phone based balance trainer. J Neuroeng Rehabil. 2012;9:10.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yvon C, Najuko-Mafemera A, Kanegaonkar R. The D+R Balance application: a novel method of assessing postural sway. J Laryngol Otol. 2015;129(8):773–8.

    Article  CAS  PubMed  Google Scholar 

  71. Huang K, Sparto PJ, Kiesler S, et al. iPod-based in-home system for monitoring gaze-stabilization exercise compliance of individuals with vestibular hypofunction. J Neuroeng Rehabil. 2014;11:69.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Agrawal Y, Merfeld DM, Horak FB, et al. Aging, vestibular function, and balance: Proceedings of a National Institute on Aging/National Institute on Deafness and Other Communication Disorders Workshop. J Gerontol A Biol Sci Med Sci. 2020;75:2471.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Varriano B, Sulway S, Wetmore C, et al. Vestibular exercises as a fall prevention strategy in patients with cognitive impairment. Can J Neurol Sci. 2019;1–5:126.

    Google Scholar 

  74. Micarelli A, Viziano A, Micarelli B, et al. Vestibular rehabilitation in older adults with and without mild cognitive impairment: effects of virtual reality using a head-mounted display. Arch Gerontol Geriatr. 2019;83:246–56.

    Article  PubMed  Google Scholar 

  75. Michel L, Laurent T, Alain T. Rehabilitation of dynamic visual acuity in patients with unilateral vestibular hypofunction: earlier is better. Eur Arch Otorhinolaryngol. 2020;277(1):103–13.

    Article  PubMed  Google Scholar 

  76. Mitsutake T, Sakamoto M, Ueta K, et al. Effects of vestibular rehabilitation on gait performance in poststroke patients: a pilot randomized controlled trial. Int J Rehabil Res. 2017;40(3):240–5.

    Article  PubMed  Google Scholar 

  77. Badaracco C, Labini FS, Meli A, et al. Vestibular rehabilitation outcomes in chronic vertiginous patients through computerized dynamic visual acuity and Gaze stabilization test. Otol Neurotol. 2007;28(6):809–13.

    Article  PubMed  Google Scholar 

  78. Scherer M, Migliaccio AA, Schubert MC. Effect of vestibular rehabilitation on passive dynamic visual acuity. J Vestib Res. 2008;18(2–3):147–57.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sherrington C, Michaleff ZA, Fairhall N, et al. Exercise to prevent falls in older adults: an updated systematic review and meta-analysis. Br J Sports Med. 2017;51(24):1750–8.

    Article  PubMed  Google Scholar 

  80. Lee PG, Jackson EA, Richardson CR. Exercise prescriptions in older adults. Am Fam Physician. 2017;95(7):425–32.

    PubMed  Google Scholar 

  81. van Vugt VA, van der Wouden JC, Essery R, et al. Internet based vestibular rehabilitation with and without physiotherapy support for adults aged 50 and older with a chronic vestibular syndrome in general practice: three armed randomised controlled trial. BMJ. 2019;367:l5922.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Warmerdam E, Hausdorff JM, Atrsaei A, et al. Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol. 2020;19(5):462–70.

    Article  PubMed  Google Scholar 

  83. Shema-Shiratzky S, Hillel I, Mirelman A, et al. A wearable sensor identifies alterations in community ambulation in multiple sclerosis: contributors to real-world gait quality and physical activity. J Neurol. 2020;267(7):1912–21.

    Article  PubMed  Google Scholar 

  84. Hasegawa N, Shah VV, Carlson-Kuhta P, et al. How to select balance measures sensitive to Parkinson’s disease from body-worn inertial sensors-separating the trees from the forest. Sensors (Basel). 2019;19(15):3320.

    Article  PubMed  Google Scholar 

  85. Horak FB, Mancini M. Objective biomarkers of balance and gait for Parkinson’s disease using body-worn sensors. Mov Disord. 2013;28(11):1544–51.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mariani B, Jiménez MC, Vingerhoets FJ, et al. On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease. IEEE Trans Biomed Eng. 2013;60(1):155–8.

    Article  PubMed  Google Scholar 

  87. Azevedo YJ, Ledesma ALL, Pereira LV, et al. Vestibular implant: does it really work? A systematic review. Braz J Otorhinolaryngol. 2019;85(6):788–98.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sluydts M, Curthoys I, Vanspauwen R, et al. Electrical vestibular stimulation in humans: a narrative review. Audiol Neurootol. 2020;25(1–2):6–24.

    Article  PubMed  Google Scholar 

  89. Richter E. Quantitative study of human Scarpa’s ganglion and vestibular sensory epithelia. Acta Otolaryngol. 1980;90(3–4):199–208.

    Article  CAS  PubMed  Google Scholar 

  90. Merchant SN, Velázquez-Villaseñor L, Tsuji K, et al. Temporal bone studies of the human peripheral vestibular system. Normative vestibular hair cell data. Ann Otol Rhinol Laryngol Suppl. 2000;181:3–13.

    Article  CAS  PubMed  Google Scholar 

  91. Velázquez-Villaseñor L, Tsuji K, Wall C, et al. Temporal bone studies of the human peripheral vestibular system: 2. Normative scarpa’s ganglion cell data. Ann Otol Rhinol Laryngol. 2000;109(5_suppl):14–9.

    Article  Google Scholar 

  92. Jang YS, Hwang CH, Shin JY, et al. Age-related changes on the morphology of the otoconia. Laryngoscope. 2006;116(6):996–1001.

    Article  PubMed  Google Scholar 

  93. Walther LE, Wenzel A, Buder J, et al. Detection of human utricular otoconia degeneration in vital specimen and implications for benign paroxysmal positional vertigo. Eur Arch Otorhinolaryngol. 2014;271(12):3133–8.

    Article  PubMed  Google Scholar 

  94. Igarashi M, Saito R, Mizukoshi K, et al. Otoconia in young and elderly persons: a temporal bone study. Acta Otolaryngol. 1993;113(sup504):26–9.

    Article  Google Scholar 

  95. Walther LE, Westhofen M. Presbyvertigo-aging of otoconia and vestibular sensory cells. J Vestib Res. 2007;17(2–3):89–92.

    CAS  PubMed  Google Scholar 

  96. Brantberg K, Granath K, Schart N. Age-related changes in vestibular evoked myogenic potentials. Audiol Neurootol. 2007;12(4):247–53.

    Article  PubMed  Google Scholar 

  97. Iwasaki S, Smulders YE, Burgess AM, et al. Ocular vestibular evoked myogenic potentials to bone conducted vibration of the midline forehead at Fz in healthy subjects. Clin Neurophysiol. 2008;119(9):2135–47.

    Article  CAS  PubMed  Google Scholar 

  98. Lopez I, Ishiyama G, Tang Y, et al. Regional estimates of hair cells and supporting cells in the human crista ampullaris. J Neurosci Res. 2005;82(3):421–31.

    Article  CAS  PubMed  Google Scholar 

  99. Rauch SD, Velazquez-Villaseñor L, Dimitri PS, et al. Decreasing hair cell counts in aging humans. Ann N Y Acad Sci. 2001;942:220–7.

    Article  CAS  PubMed  Google Scholar 

  100. Baloh RW, Jacobson KM, Socotch TM. The effect of aging on visual-vestibuloocular responses. Exp Brain Res. 1993;95(3):509–16.

    Article  CAS  PubMed  Google Scholar 

  101. Baloh RW, Enrietto J, Jacobson KM, et al. Age-related changes in vestibular function: a longitudinal study. Ann N Y Acad Sci. 2001;942:210–9.

    Article  CAS  PubMed  Google Scholar 

  102. Peterka RJ, Black FO, Schoenhoff MB. Age-related changes in human vestibulo-ocular reflexes: sinusoidal rotation and caloric tests. J Vestib Res. 1990;1(1):49–59.

    Article  PubMed  Google Scholar 

  103. Ward BK, Mohammed MT, Brach JS, et al. Physical performance and a test of gaze stabilization in older adults. Otol Neurotol. 2010;31(1):168–72.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Anson ER, Bigelow RT, Carey JP, et al. VOR gain is related to compensatory saccades in healthy older adults. Front Aging Neurosci. 2016;8:150.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kim TH, Kim MB. Effect of aging and direction of impulse in video head impulse test. Laryngoscope. 2018;128(6):E228–e33.

    Article  PubMed  Google Scholar 

  106. Lopez I, Honrubia V, Baloh RW. Aging and the human vestibular nucleus. J Vestib Res. 1997;7(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  107. Tang Y, Lopez I, Baloh RW. Age-related change of the neuronal number in the human medial vestibular nucleus: a stereological investigation. J Vestib Res. 2001;11(6):357–63.

    Article  PubMed  Google Scholar 

  108. Baloh RW, Spain S, Socotch TM, et al. Posturography and balance problems in older people. J Am Geriatr Soc. 1995;43(6):638–44.

    Article  CAS  PubMed  Google Scholar 

  109. Wolfson L, Whipple R, Derby CA, et al. A dynamic posturography study of balance in healthy elderly. Neurology. 1992;42(11):2069–75.

    Article  CAS  PubMed  Google Scholar 

  110. Teasdale N, Stelmach GE, Breunig A. Postural sway characteristics of the elderly under normal and altered visual and support surface conditions. J Gerontol. 1991;46(6):B238–44.

    Article  CAS  PubMed  Google Scholar 

  111. Seferlis F, Chimona TS, Papadakis CE, et al. Age related changes in ocular motor testing in healthy subjects. J Vestib Res. 2015;25(2):57–66.

    Article  PubMed  Google Scholar 

  112. Luft AR, Skalej M, Schulz JB, et al. Patterns of age-related shrinkage in cerebellum and brainstem observed in vivo using three-dimensional MRI volumetry. Cereb Cortex. 1999;9(7):712–21.

    Article  CAS  PubMed  Google Scholar 

  113. Torvik A, Torp S, Lindboe CF. Atrophy of the cerebellar vermis in ageing. A morphometric and histologic study. J Neurol Sci. 1986;76(2–3):283–94.

    Article  CAS  PubMed  Google Scholar 

  114. Cyran CA, Boegle R, Stephan T, et al. Age-related decline in functional connectivity of the vestibular cortical network. Brain Struct Funct. 2016;221(3):1443–63.

    Article  PubMed  Google Scholar 

  115. Brandt T, Schautzer F, Hamilton DA, et al. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain. 2005;128(Pt 11):2732–41.

    Article  PubMed  Google Scholar 

  116. Jahn K, Naessl A, Schneider E, et al. Inverse U-shaped curve for age dependency of torsional eye movement responses to galvanic vestibular stimulation. Brain. 2003;126(Pt 7):1579–89.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Thompson-Harvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thompson-Harvey, A., Agrawal, Y. (2023). Aging and the Vestibular System. In: Crane, B.T., Lustig, L., de Souza, C. (eds) Disorders of the Vestibular System. Springer, Cham. https://doi.org/10.1007/978-3-031-40524-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40524-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40523-5

  • Online ISBN: 978-3-031-40524-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics