Skip to main content

Turbulent Wedge Modeling in Local Correlation-Based Transition Models

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics XIV (STAB/DGLR Symposium 2022)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 154))

Included in the following conference series:

  • 357 Accesses

Abstract

This article presents a novel approach to include turbulent wedges in local correlation-based \(\gamma \) transition models. The turbulent wedge is modeled by increasing the intermittency at the wedge apex. The wedge develops downstream without further interference in the transition model behavior. The method is demonstrated for an experimental high Reynolds number test case on the NASA CRM-NLF configuration. Wedges are successfully created, but the wedge angles are too large compared to the experimental data. Grid spacing, initial disturbance size, and scaling of the diffusion term only have a minor effect on the wedge angles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charters, A.C., Jr.: Transition between Laminar and Turbulent Flow by Transverse Contamination. NACA-TN-891, NACA, Washington, D.C. (1943)

    Google Scholar 

  2. Schubauer, G.B., Klebanoff, P.S.: Contributions on the Mechanics of Boundary-Layer Transition. NACA-TR-1289, NACA, Washington, D.C. (1956)

    Google Scholar 

  3. Gostelow, J.P., Melwani, N., Walker, G.J.: Effects of streamwise pressure gradient on turbulent spot development. J. Turbomach. 118(4), 737–743 (1996). https://doi.org/10.1115/1.2840929

    Article  Google Scholar 

  4. Zhong, S., Chong, T.P., Hodson, H.P.: A comparison of spreading angles of turbulent wedges in velocity and thermal boundary layers. J. Fluids Eng. 125(2), 267–274 (2003). https://doi.org/10.1115/1.1539871

    Article  Google Scholar 

  5. Goldstein, D., Chu, J., Brown, G.: Lateral spreading mechanism of a turbulent spot and a turbulent wedge. Flow Turbul. Combust. 98(1), 21–35 (2016). https://doi.org/10.1007/s10494-016-9748-z

    Article  Google Scholar 

  6. Berger, A.R.: Fundamental Mechanism of Turbulent Wedge Spreading. PhD thesis, Texas A &M University, College Station (2020)

    Google Scholar 

  7. Gad-El-Hak, M., Blackwelderf, R.F., Riley, J.J.: On the growth of turbulent regions in laminar boundary layers. J. Fluid Mech. 110, 73–95 (1981)

    Article  Google Scholar 

  8. Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-code: recent applications in research and industry. In: Proceedings European Conference on Computational Fluid Dynamics ECCOMAS, Delft (2006)

    Google Scholar 

  9. Fehrs, M.: Boundary Layer Transition in External Aerodynamics and Dynamic Aeroelastic Stability. PhD thesis, TU Braunschweig, ISSN 1434-8454, ISRN DLRFB-2018-11, also NFL-FB 2017-27, Braunschweig (2018)

    Google Scholar 

  10. François, D.G., Krumbein, A., Krimmelbein, N., Grabe, C.: Simplified stability-based transition transport modeling for unstructured computational fluid dynamics. In: AIAA SCITECH 2022 Forum, AIAA, San Diego (2022). https://doi.org/10.2514/6.2022-1543

  11. Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. In: Hanjalić, K., Nagano, Y., Tummers, M. (eds.) Turbulence, Heat and Mass Transfer, vol. 4, pp. , 625–632. Begell House, Inc. (2003)

    Google Scholar 

  12. Helm, S., Fehrs, M., Kaiser, C., Krimmelbein, N., Krumbein, A.: Numerical simulation of the common research model with natural laminar flow. J. Aircraft 60(2), 449–460 (2023). https://doi.org/10.2514/1.C036889

    Article  Google Scholar 

  13. Lynde, M.N., Campbell, R.L.: Computational design and analysis of a transonic natural laminar flow wing for a wind tunnel model. In: \(35^{th}\) AIAA Applied Aerodynamics Conference, AIAA, Denver (2017). https://doi.org/10.2514/6.2017-3058

  14. 1\(^{st} \) AIAA Transition Modeling and Prediction Workshop. Description of Test Cases. https://transitionmodeling.larc.nasa.gov/wp-content/uploads/sites/109/2020/02/TransitionMPW_CaseDescriptions.pdf. Accessed 20 July 2022

  15. Krumbein, A., Krimmelbein, N., Schrauf, G.: Automatic transition prediction in hybrid flow solver, part 1: methodology and sensitivities. J. Aircraft 46(4), 1176–1190 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fehrs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fehrs, M., Helm, S. (2024). Turbulent Wedge Modeling in Local Correlation-Based Transition Models. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Weiss, J. (eds) New Results in Numerical and Experimental Fluid Mechanics XIV. STAB/DGLR Symposium 2022. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 154. Springer, Cham. https://doi.org/10.1007/978-3-031-40482-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40482-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40481-8

  • Online ISBN: 978-3-031-40482-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics