Skip to main content

The Consensus Machine: Formalising Consensus in the Presence of Malign Agents

  • Chapter
  • First Online:
Theories of Programming and Formal Methods

Abstract

This paper is on the application of formal modelling in CSP and associated verification to decision making in decentralised systems. In particular we look at the problem of ensuring that decentralisation cannot allow two separate and apparently valid decisions to arise when exactly one is required. This is motivated by an approach to blockchain consensus where a primary choice mechanism may need to be supplemented by a back-up that comes into action if the primary one is seemingly blocked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at https://cocotec.io/fdr/.

References

  1. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 142–157. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_10

    Chapter  Google Scholar 

  2. Brookes, S.D., Roscoe, A.W.: CSP: A Practical Process Algebra, 1 edn., pp. 187–222. Association for Computing Machinery, New York (2021)

    Google Scholar 

  3. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. CoRR abs/1807.04938 (2018). http://arxiv.org/abs/1807.04938

  4. Buterin, V.: Ethereum: a next-generation smart contract and decentralized application Platform (2014). https://ethereum.org/whitepaper/

  5. Buterin, V., Griffith, V.: Casper the friendly finality gadget. CoRR abs/1710.09437 (2017). http://arxiv.org/abs/1710.09437

  6. Camenisch, J., Drijvers, M., Hanke, T., Pignolet, Y.A., Shoup, V., Williams, D.: Internet computer consensus. In: Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, PODC 2022, pp. 81–91. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3519270.3538430

  7. Dowd, K., Cotter, J., Humphrey, C., Woods, M.: How unlucky is 25-sigma? J. Portfolio Manag. 34, 76–80 (2008). https://doi.org/10.3905/jpm.2008.709984

    Article  Google Scholar 

  8. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM (JACM) 35(2), 288–323 (1988)

    Article  MathSciNet  Google Scholar 

  9. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3—a modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_13

    Chapter  MATH  Google Scholar 

  11. Gibson-Robinson, T., Lowe, G.: Symmetry reduction in CSP model checking. Int. J. Softw. Tools Technol. Transfer 21(5), 567–605 (2019). https://doi.org/10.1007/s10009-019-00516-4

    Article  Google Scholar 

  12. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles, SOSP 2017, pp. 51–68. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3132747.3132757

  13. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoare, C.A.R.: Communicating Sequential Processes. International Series in Computer Science. Prentice Hall (1985)

    Google Scholar 

  15. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  16. King, S., Nadal, S.: Ppcoin: peer-to-peer crypto-currency with proof-of-stake. Self-published paper, 19 August 2012

    Google Scholar 

  17. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169 (1998). https://doi.org/10.1145/279227.279229

    Article  MATH  Google Scholar 

  18. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/357172.357176

    Article  MATH  Google Scholar 

  19. Li, X., Zhu, Q., Qi, N., Huang, J., Yuan, Y., Wang, F.Y.: Blockchain consensus algorithms: a survey. In: 2021 China Automation Congress (CAC), pp. 4053–4058 (2021). https://doi.org/10.1109/CAC53003.2021.9728000

  20. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst. 16(6), 1811–1841 (1994). https://doi.org/10.1145/197320.197383

    Article  Google Scholar 

  21. Lowe, G.: Casper: a compiler for the analysis of security protocols. J. Comput. Secur. 6(1–2), 53–84 (1998)

    Article  Google Scholar 

  22. Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  23. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In: Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference, USENIX ATC 2014, pp. 305–320. USENIX Association (2014)

    Google Scholar 

  24. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980). https://doi.org/10.1145/322186.322188

    Article  MathSciNet  MATH  Google Scholar 

  25. Rabin, M.O.: Randomized byzantine generals. In: 24th Annual Symposium on Foundations of Computer Science (SFCS 1983), pp. 403–409 (1983). https://doi.org/10.1109/SFCS.1983.48

  26. Roscoe, A.W.: Model-checking CSP. In: International Series in Computer Science. Prentice Hall (1994). http://www.cs.ox.ac.uk/people/bill.roscoe/publications/50.ps

  27. Roscoe, A.W.: The Theory and Practice of Concurrency. Series in Computer Science. Prentice Hall (1998)

    Google Scholar 

  28. Roscoe, A.W.: Understanding Concurrent Systems. Springer, London (2010). https://doi.org/10.1007/978-1-84882-258-0

    Book  MATH  Google Scholar 

  29. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M., Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to check 1020 dining philosophers for deadlock. In: Brinksma, E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 133–152. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0_7

    Chapter  Google Scholar 

  30. Wood, G.: Ethereum yellow paper. https://ethereum.github.io/yellowpaper/paper.pdf

  31. Xiao, Y., Zhang, N., Lou, W., Hou, Y.T.: A survey of distributed consensus protocols for blockchain networks. IEEE Commun. Surv. Tutor. 22(2), 1432–1465 (2020). https://doi.org/10.1109/COMST.2020.2969706

    Article  Google Scholar 

  32. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT consensus with linearity and responsiveness. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, pp. 347–356. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3293611.3331591

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. Roscoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roscoe, A.W., Antonino, P., Lawrence, J. (2023). The Consensus Machine: Formalising Consensus in the Presence of Malign Agents. In: Bowen, J.P., Li, Q., Xu, Q. (eds) Theories of Programming and Formal Methods. Lecture Notes in Computer Science, vol 14080. Springer, Cham. https://doi.org/10.1007/978-3-031-40436-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40436-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40435-1

  • Online ISBN: 978-3-031-40436-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics