Skip to main content

Abstract

We introduce and study Lévy process in Hilbert space. These processes are the basic noise drivers in the forward price dynamics. Explicit constructions based on subordination of Wiener process to define normal inverse Gaussian, stable and variance-gamma Lévy processes with values in Hilbert space are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    the French acronym càdlàg means continuous from the right, limits from the left.

  2. 2.

    By \(\boldsymbol {\theta }\leq \boldsymbol {\theta }_1\) we mean that \(\theta _j\leq \theta _{1,j}\) for all \(j=1,\ldots ,d\).

References

  1. Albert, A. (1972). Regression and the Moore-Penrose Pseudoinverse. Academic Press, New York.

    MATH  Google Scholar 

  2. Andersen, A., Koekebakker, S., and Westgaard, S. (2010). Modeling electricity forward prices using the multivariate normal inverse Gaussian distribution. Journal of Energy Markets, 3(3), pp. 3–25.

    Article  Google Scholar 

  3. Ané, T., and Geman, H. (2000). Order flow, transaction clock, and normality of asset returns. Journal of Finance, 55(5), pp. 2259–2284.

    Article  Google Scholar 

  4. Baeumer, B., Kovács, M., and Meerschaert, M. M. (2008). Subordinated multiparameter groups of linear operators: Properties via the transference principle. In Functional Analysis and Evolution Equations. The Günter Lumer Volume, Amann, H., Arendt, W., Hieber, M., Neubrander, F., Nicaise, S. and J. von Below (eds.), Birkhäuser Verlag, Basel Boston Berlin, pp. 35–50.

    Google Scholar 

  5. Barndorff-Nielsen, O. E. (1977). Exponentially decreasing distributions for the logarithm of particle size. Proceedings of the Royal Society of London, Series A, 353(1674), pp. 401–409.

    Google Scholar 

  6. Barndorff-Nielsen, O. E., Benth, F. E., and Veraart, A. (2014). Modelling electricity futures by ambit fields. Advances in Applied Probability, 46(3), pp. 719–745.

    Article  MathSciNet  MATH  Google Scholar 

  7. Barndorff-Nielsen, O. E., Pedersen, J., and Sato, K. (2001). Multivariate subordination, self-decomposability and stability. Advances in Applied Probability, 33(1), pp. 160–187.

    Article  MathSciNet  MATH  Google Scholar 

  8. Barndorff-Nielsen, O. E., and Schmiegel, J. (2004), Lévy-based tempo-spatial modelling with applications to turbulence. Uspekhi Mat. NAUK, 59, pp. 65–91.

    MATH  Google Scholar 

  9. Benth, F. E., Klüppelberg, C., Müller, G., and Vos, L. (2014). Futures pricing in electricity markets based on stable CARMA spot models. Energy Economics, 44, pp. 392–406.

    Article  Google Scholar 

  10. Benth, F. E., and Krühner, P. (2015) Subordination of Hilbert space valued Lévy processes. Stochastics, 87(3), pp. 458–476.

    Article  MathSciNet  MATH  Google Scholar 

  11. Benth, F. E., and Krühner, P. (2015). Derivatives pricing in energy markets: an infinite dimensional approach. SIAM Journal of Financial Mathematics, 6(1), pp. 825–869.

    Article  MathSciNet  MATH  Google Scholar 

  12. Benth, F. E., and Šaltytė Benth (2012). Stochastic modelling of temperature variations with a view towards weather derivatives. Applied Mathematical Finance, 12(1), pp. 53–85.

    Article  MATH  Google Scholar 

  13. Benth, F. E., and Šaltytė Benth (2012). Modelling and Pricing in Financial Markets for Weather Derivatives. World Scientific, Singapore.

    Book  MATH  Google Scholar 

  14. Bertoin, J. (1996). Lévy Processes. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  15. Bochner, S. (1949). Diffusion equation and stochastic processes. Proceedings of the National Academy of Sciences of the United States of America, 35, (7), pp. 368–370.

    Article  MathSciNet  MATH  Google Scholar 

  16. Borovkova, S., and Schmeck, M. D. (2017). Electricity price modeling with stochastic time change. Energy Economics, 63, pp. 51–65.

    Article  Google Scholar 

  17. Carmona, R., and Teranchi, M. (2006). Interest Rate Models: an Infinite Dimensional Stochastic Analysis Perspective. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  18. Conway, J. (1990). A Course in Functional Analysis, 2nd Ed., Springer-Verlag, New York.

    MATH  Google Scholar 

  19. Eberlein, E., Jacod, J., and Raible, S. (2005). Lévy term structure models: No-arbitrage and completeness. Finance & Stochastics, 9, pp. 67–88.

    Article  MathSciNet  MATH  Google Scholar 

  20. Eberlein, E., and Keller, U. (1995). Hyperbolic distributions in finance. Bernoulli, 1, pp. 281–299.

    Article  MATH  Google Scholar 

  21. Eberlein, E., and Stahl, G. (2003). Both sides of the fence: A statistical and regulatory view of electricity risk. Energy Risk, 8, pp. 34–38.

    Google Scholar 

  22. Ethier, S. and Kurtz, T. (1986). Markov Processes. Characterization and Convergence. John Wiley & Sons, New York.

    Book  MATH  Google Scholar 

  23. Frestad, D., Benth, F. E., and Koekebakker, S. (2010). Modeling term structure dynamics in the Nordic electricity swap market. Energy Journal, 31(2), pp. 53–86.

    Article  Google Scholar 

  24. Garcia, I., Klüppelberg, C., and Müller, G. (2011). Estimation of stable carma models with an application to electricity spot prices. Statistical Modelling, 11, pp. 447 470.

    Google Scholar 

  25. Geman, H., Madan, D. B., and Yor, M. (2001). Time changes for Lévy processes. Mathematical Finance, 11(1), pp. 79–96.

    Article  MathSciNet  MATH  Google Scholar 

  26. Goutte, S., Oudjane, N., and Russo, F. (2014). Variance optimal hedging for continuous time additive processes and applications. Stochastics, 86, pp. 147–185.

    Article  MathSciNet  MATH  Google Scholar 

  27. Hinderks, W. J., and Wagner, A. (2020). Factor models in the German electricity market: Stylized facts, seasonality, and calibration. Energy Economics, 85, article 104351.

    Google Scholar 

  28. Kremer, M., Benth, F. E., Felten, B., and Kiesel, R. (2020). Volatility and liqudity on high-frequency electricity futures markets: empirical analysis and stochastic modeling. International Journal of Theoretical and Applied Finance, 23(4), pp. 1–38.

    Article  MATH  Google Scholar 

  29. Ladokhin, S., Schmeck, M. D., and Borovkova, S. (2021). Commodity forward curves with stochastic time change. E-print July, available on ssrn: 3871680.

    Google Scholar 

  30. Linde, W. (1983). Infinitely Divisible and Stable Measures on Banach Spaces.. B. G. Teubner Verlagsgesellschaft, Leipzig.

    Google Scholar 

  31. Madan, D., Carr, P., and Chang, E. (1998). The variance gamma process and option pricing. European Finance Review, 2, pp. 79–105.

    Article  MATH  Google Scholar 

  32. Madan, D., and Seneta, E. (1990). The VG model for share market returns. Journal of Business, 63(4), pp. 511–524.

    Article  Google Scholar 

  33. Mendoza-Arriaga, R., and Linetsky, V. (2016). Multivariate subordination of Markov processes with financial applications. Mathematical Finance, 26(4), pp. 699–747.

    Article  MathSciNet  MATH  Google Scholar 

  34. Øigård, T. A., and Hanssen, A. (2002). The multivariate normal inverse Gaussian heavy-tailed distribution: simulation and estimation. In 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 2, pp. II–1489 - II–1492.

    Google Scholar 

  35. Parthasarathy, K. R. (1967). Probability Measures on Metric Spaces. Academic Press, New York-London.

    Book  MATH  Google Scholar 

  36. Pedersen, G. K. (1989). Analysis Now, Springer-Verlag, New York,

    Book  MATH  Google Scholar 

  37. Pérez-Abreu, V., and Rocha-Arteaga, A. (2005). Covariance-parameter Lévy processes in the space of trace-class operators. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 8(1), pp. 33–54.

    Article  MathSciNet  MATH  Google Scholar 

  38. Peszat, S., and Zabczyk, J. (2007). Stochastic Partial Differential Equations with Lévy Noise. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  39. Piccirilli, M., Schmeck, M. D:, and Vargiolu, T. (2021). Capturing the power options smile by an additive two-factor model for overlapping futures prices. Energy Economics, 95, article 105006.

    Google Scholar 

  40. Rydberg, T. (1997). The normal inverse Gaussian Lévy process: simulation and approximation. Communications in Statistics. Stochastic Models, 13, pp. 887–910.

    Article  MathSciNet  MATH  Google Scholar 

  41. Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  42. Skorohod, A. V. (1991). Random Processes with Independent Increments. Kluwer Academic Press, Mathematics and its Applications Vol. 47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benth, F.E., Krühner, P. (2023). Lévy processes on Hilbert Spaces. In: Stochastic Models for Prices Dynamics in Energy and Commodity Markets. Springer Finance. Springer, Cham. https://doi.org/10.1007/978-3-031-40367-5_2

Download citation

Publish with us

Policies and ethics