Skip to main content

Autonomy as Shared Asset of CPS Architectures

  • Conference paper
  • First Online:
Subject-Oriented Business Process Management. Models for Designing Digital Transformations (S-BPM ONE 2023)

Abstract

Autonomous cyber-physical systems (CPS) will influence our daily lives more and more. Collaboration between intelligent machines and humans will become commonplace and negotiation of the autonomy of the actors involved may be required. The concept of shared autonomy is used to address this situation. An implementation of a subject-oriented architecture for shared autonomy is implemented in the context of a use case in smart logistics. Based on this use case, we present the generic concept and aim at its technical feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albus, J., Antsaklis, P.: Autonomy in engineering systems: what is it and why is it important? setting the stage: some autonomous thoughts on autonomy. In: Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC), pp. 520–521. IEEE (1998). https://doi.org/10.1109/ISIC.1998.713716

  2. Alonso, V., de la Puente, P.: System transparency in shared autonomy: a mini review. Front. Neurorob. 12, 83 (2018). https://doi.org/10.3389/fnbot.2018.00083

  3. Ansari, F., Khobreh, M., Seidenberg, U., Sihn, W.: A problem-solving ontology for human-centered cyber physical production systems. CIRP J. Manuf. Sci. Technol. 22, 91–106 (2018). https://doi.org/10.1016/j.cirpj.2018.06.002

    Article  Google Scholar 

  4. Antons, O., Arlinghaus, J.C.: Designing decision-making authorities for smart factories. Procedia CIRP 93, 316–322 (2020). https://doi.org/10.1016/j.procir.2020.04.047

    Article  Google Scholar 

  5. Antsaklis, P.J., Passino, K.M., Wang, S.J.: An introduction to autonomous control systems. IEEE Control Syst. 11(4), 5–13 (1991). https://doi.org/10.1109/37.88585

    Article  Google Scholar 

  6. Chen, J., Abbod, M., Shieh, J.S.: Integrations between autonomous systems and modern computing techniques: a mini review. Sensors 19(18), 3897 (2019). https://doi.org/10.3390/s19183897

    Article  Google Scholar 

  7. Collier, J.: What is autonomy? In: International Journal of Computing Anticipatory Systems: CASY 2001-Fifth International Conference, vol. 20 (2002). https://cogprints.org/2289/

  8. Esterle, L., Gomes, C., Frasheri, M., Ejersbo, H., Tomforde, S., Larsen, P.G.: Digital twins for collaboration and self-integration. In: 2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C), pp. 172–177. IEEE (2021). https://doi.org/10.1109/ACSOS-C52956.2021.00040

  9. Fridman, L.: Human-centered autonomous vehicle systems: principles of effective shared autonomy (2018). https://doi.org/10.48550/arXiv.1810.01835

  10. Gharib, M., Lollini, P., Ceccarelli, A., Bondavalli, A.: Governance & autonomy: towards a governance-based analysis of autonomy in cyber-physical systems-of-systems. In: 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE), pp. 000217–000222. IEEE (2020). https://doi.org/10.1109/SoSE50414.2020.9130527

  11. Gharib, M., Dias da Silva, L., Ceccarelli, A.: A model to discipline autonomy in cyber-physical systems-of-systems and its application. J. Softw. Evol. Process 33(9), e2328 (2021). https://doi.org/10.1002/smr.2328

  12. Gil, M., Albert, M., Fons, J., Pelechano, V.: Designing human-in-the-loop autonomous Cyber-Physical Systems. Int. J. Hum.-Comput. Stud. 130, 21–39 (2019). https://doi.org/10.1016/j.ijhcs.2019.04.006

    Article  Google Scholar 

  13. Gillespie, T.: Building trust and responsibility into autonomous human-machine teams. Front. Phys. 10 (2022). https://doi.org/10.3389/fphy.2022.942245

  14. Heininger, R., Jost, T.E., Stary, C.: Enriching socio-technical sustainability intelligence through sharing autonomy. Sustainability 15(3), 2590 (2023). https://doi.org/10.3390/SU15032590

  15. Janiesch, C., Fischer, M., Winkelmann, A., Nentwich, V.: Specifying autonomy in the Internet of Things: the autonomy model and notation. Inf. Syst. e-Bus. Manag. 17(1), 159–194 (2018). https://doi.org/10.1007/s10257-018-0379-x

    Article  Google Scholar 

  16. Leitão, P., Queiroz, J., Sakurada, L.: Collective intelligence in self-organized industrial cyber-physical systems. Electronics 11(19), 3213 (2022). https://doi.org/10.3390/electronics11193213

    Article  Google Scholar 

  17. Leng, J., Chen, Z., Sha, W., Ye, S., Liu, Q., Chen, X.: Cloud-edge orchestration-based bi-level autonomous process control for mass individualization of rapid printed circuit boards prototyping services. J. Manuf. Syst. 63, 143–161 (2022). https://doi.org/10.1016/J.JMSY.2022.03.008

    Article  Google Scholar 

  18. Neema, S., Parikh, R., Jagannathan, S.: Building resource adaptive software systems. IEEE Softw. 36(2), 103–109 (2019). https://doi.org/10.1109/MS.2018.2886831

    Article  Google Scholar 

  19. Nordstrom, S.G., Shetty, S.S., Neema, S.K., Bapty, T.A.: Modeling reflex-healing autonomy for large-scale embedded systems. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 36(3), 292–303 (2006). https://doi.org/10.1109/TSMCC.2006.871597

    Article  Google Scholar 

  20. Prenzel, L., Steinhorst, S.: Decentralized autonomous architecture for resilient cyber-physical production systems. In: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), vol. 2021-February, pp. 1300–1303. IEEE (2021). https://doi.org/10.23919/DATE51398.2021.9473954

  21. Sifakis, J.: Autonomous systems – an architectural characterization. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and Distributed Programming. LNCS, vol. 11665, pp. 388–410. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21485-2_21

    Chapter  Google Scholar 

  22. Stock, D., Bauernhansl, T., Weyrich, M., Feurer, M., Wutzke, R.: System architectures for cyber-physical production systems enabling self-x and autonomy. In: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 2020-September, pp. 148–155. IEEE (2020). https://doi.org/10.1109/ETFA46521.2020.9212182

  23. Vassev, E., Hinchey, M.: Autonomy requirements engineering. In: Autonomy Requirements Engineering for Space Missions. NMSSE, pp. 105–172. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09816-6_3

    Chapter  Google Scholar 

  24. Williams, A.P.: Defining autonomy in systems: challenges and solutions. In: Williams, A.P., Scharre, P.D. (eds.) Autonomous Systems: Issues for Defence Policymakers, Chap. 2, pp. 27–62. NATO Communications and Information Agency, The Hague (2015). https://apps.dtic.mil/sti/citations/AD1010077

  25. Yaxley, K.J., Joiner, K.F., Bogais, J., Abbass, H.A.: Life learning of smart autonomous systems for meaningful human-autonomy teaming. In: A Framework of Human Systems Engineering, pp. 43–61. Wiley (2020). https://doi.org/10.1002/9781119698821.ch4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Heininger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heininger, R., Jost, T.E., Stary, C. (2023). Autonomy as Shared Asset of CPS Architectures. In: Elstermann, M., Dittmar, A., Lederer, M. (eds) Subject-Oriented Business Process Management. Models for Designing Digital Transformations. S-BPM ONE 2023. Communications in Computer and Information Science, vol 1867. Springer, Cham. https://doi.org/10.1007/978-3-031-40213-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40213-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40212-8

  • Online ISBN: 978-3-031-40213-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics