Skip to main content

Gadolinium-Based Functional MR Urography: From Image Acquisition to Interpretation

  • Chapter
  • First Online:
Advanced Clinical MRI of the Kidney


Gadolinium-based functional MR urography (fMRU) offers high spatial, contrast, and temporal resolution, using renal parenchymal signal changes in dynamic T1-weighted images related to uptake and excretion of intravenous administration of a gadolinium-based contrast agent to estimate renal function and contrast clearance times. This technique has been proved to give equivalent information to nuclear medicine renal scans and intravenous urograms without the use of ionizing radiation and with increased anatomic detail. fMRU is increasingly being used to evaluate the urinary tract with both anatomic and functional information. Common applications are related to suspected urinary tract obstruction and estimation of underlying renal function in children but can also help estimating residual renal function during surgical planning.

Familiarity with underlying assumptions and postprocessing steps is needed to generate and interpret functional MRU parameters. In this chapter, we describe fMRU patient preparation, imaging acquisition, and postprocessing including how common quantitative parameters are produced to assist further dissemination and adoption of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions



Calyceal transit time


Differential renal function


Estimated glomerular filtration rate


Functional magnetic resonance urography


Mean transit time


Renal transit time


  1. Grattan-Smith JD, Chow J, Kurugol S, Jones RA. Quantitative renal magnetic resonance imaging: magnetic resonance urography. Pediatr Radiol. 2022;52(2):228–48.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Claudon M, Durand E, Grenier N, Prigent A, Balvay D, Chaumet-Riffaud P, et al. Chronic urinary obstruction: evaluation of dynamic contrastenhanced MR urography for measurement of split renal function. Radiology. 2014;273(3):801–12.

    Article  PubMed  Google Scholar 

  3. Damasio MB, Bodria M, Dolores M, Durand E, Sertorio F, Wong MCY, et al. Comparative study between functional MR urography and renal scintigraphy to evaluate drainage curves and Split renal function in children with congenital anomalies of kidney and urinary tract (CAKUT). Front Pediatr. 2020;7:7(January).

    Article  Google Scholar 

  4. Karaveli M, Katsanidis D, Psarrakos K, Sioundas A, Dimitriadis A, Haritanti A, et al. MR urography: anatomical and quantitative information on congenital malformations in children. Niger Med J. 2013;54(2):136.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Khrichenko D, Darge K. Functional analysis in MR urography - made simple. Pediatr Radiol. 2010;40(2):182–99.

    Article  PubMed  Google Scholar 

  6. Bo S, Sedaghat F, Devi Pavuluri K, Rowe SP, Cohen A, Kates M, et al. Dynamic contrast enhanced-mr cest urography: an emerging tool in the diagnosis and management of upper urinary tract obstruction. Tomography. 2021;7(1):80–94.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Abreu-Gomez J, Udare A, Shanbhogue KP, Schieda N. Update on MR urography (MRU): technique and clinical applications. Abdom Radiol. 2019;44(12):3800–10.

    Article  Google Scholar 

  8. Dickerson EC, Dillman JR, Smith EA, Dipietro MA, Lebowitz RL, Darge K. Pediatric MR urography: indications, techniques, and approach to review. Radiographics. 2015;35(4):1208–30.

    Article  PubMed  Google Scholar 

  9. Riccabona M. Pediatric urogenital radiology. Third edit. Springer International Publishing; 2018. p. 34.

    Book  Google Scholar 

  10. Jones RA, Easley K, Little SB, Scherz H, Kirsch AJ, Grattan-Smith JD. Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part I, functional assessment. Am J Roentgenol. 2005;185(6):1598–607.

    Article  Google Scholar 

  11. Lee MJ, Kim MJ, Yoon CS, Song SY, Park K, Kim WS. The T2-shortening effect of gadolinium and the optimal conditions for maximizing the CNR for evaluating the biliary system: a phantom study. Korean J Radiol. 2011;12(3):358;/pmc/articles/PMC3088853/.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Elster AD, Sobol WT, Hinson WH. Pseudolayering of Gd-DTPA in the urinary bladder. Radiology. 1990;174(2):379–81;

    Article  CAS  PubMed  Google Scholar 

  13. May DA, Pennington DJ. Effect of gadolinium concentration on renal signal intensity: an in vitro study with a saline bag model. Radiology. 2000;216(1):232–6;

    Article  CAS  PubMed  Google Scholar 

  14. Delgado J, Bedoya MA, Adeb M, Carson RH, Johnson AM, Khrichenko D, et al. Optimizing functional MR urography: prime time for a 30-minutes-or-less fMRU. Pediatr Radiol. 2015;45(9):1333–43.

    Article  PubMed  Google Scholar 

  15. Altun E, Martin DR, Wertman R, Lugo-Somolinos A, Fuller ER, Semelka RC. Nephrogenic systemic fibrosis: change in incidence following a switch in gadolinium agents and adoption of a gadolinium policy - report from two U.S. universities. Radiology. 2009;253(3):689–96.

    Article  PubMed  Google Scholar 

  16. ACR manual on contrast media 2022: ACR Committee on drugs and contrast media. 2022.

    Google Scholar 

  17. Runge VM, Richter JK, Heverhagen JT. Motion in magnetic resonance: new paradigms for improved clinical diagnosis. Invest Radiol. 2019;54(7):383–95;

    Article  PubMed  Google Scholar 

  18. Feng L. Golden-angle Radial MRI: basics, advances, and applications. J Magn Reson Imaging. 2022;56(1):45–62;

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jones RA, Grattan-Smith JD, Little S. MR urography in children. Milan: Springer; 2014. p. 295–310.

    Google Scholar 

  20. Jones RA, Schmotzer B, Little SB, Grattan-Smith JD. MRU post-processing. Pediatr Radiol. 2008;38(1 SUPPL):18–27.

    Article  Google Scholar 

  21. Little SB, Jones RA, Grattan-Smith JD. Evaluation of UPJ obstruction before and after pyeloplasty using MR urography. Pediatr Radiol. 2008;38(1 SUPPL):106–24.

    Article  Google Scholar 

  22. Jones RA, Perez-Brayfield MR, Kirsch AJ, Grattan-Smith JD. Renal transit time with MR urography in children. Radiology. 2004;233(1):41–50.

    Article  PubMed  Google Scholar 

  23. Viteri B, Calle-Toro JS, Ballester L, Darge K, Furth S, Khrichenko D, et al. Potential benefits of functional magnetic resonance urography (fMRU) over MAG3 renal scan in children with obstructive uropathy. J Pediatr Urol. 2021;17(5):659.e1–7.

    Article  PubMed  Google Scholar 

  24. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1985;5(4):584–90.

    Article  CAS  PubMed  Google Scholar 

  25. Hackstein N, Heckrodt J, Rau WS. Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-Echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imaging. 2003;18(6):714–25.

    Article  PubMed  Google Scholar 

  26. Hackstein N, Kooijman H, Tomaselli S, Rau WS. Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA. J Magn Reson Imaging. 2005;22(3):406–14;

    Article  PubMed  Google Scholar 

  27. Mendichovszky I, Pedersen M, Frøkiær J, Dissing T, Grenier N, Anderson P, et al. How accurate is dynamic contrast-enhanced MRI in the assessment of renal glomerular filtration rate? A critical appraisal. J Magn Reson Imaging. 2008;27(4):925–31.

    Article  PubMed  Google Scholar 

  28. McMann LP, Kirsch AJ, Scherz HC, Smith EA, Jones RA, Shehata BM, et al. Magnetic resonance urography in the evaluation of prenatally diagnosed Hydronephrosis and renal dysgenesis. J Urol. 2006;176(4 SUPPL):1786–92.

    Article  PubMed  Google Scholar 

  29. Grattan-Smith JD, Jones RA. Magnetic resonance urography in children. Magn Reson Imaging Clin N Am. 2008;16(3):515–31.

    Article  PubMed  Google Scholar 

  30. Park JM, Bloom DA. The pathophysiology of UPJ obstruction: current concepts. Urol Clin North Am. 1998;25(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  31. Farrugia MK, Whitaker RH. The search for the definition, etiology, and effective diagnosis of upper urinary tract obstruction: the Whitaker test then and now. J Pediatr Urol. 2019;15(1):18–26.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hansel J. Otero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rincon-Escobar, E.A., Khrichenko, D., Otero, H.J. (2023). Gadolinium-Based Functional MR Urography: From Image Acquisition to Interpretation. In: Serai, S.D., Darge, K. (eds) Advanced Clinical MRI of the Kidney. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40168-8

  • Online ISBN: 978-3-031-40169-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics