Skip to main content

Defining the Assembleome of the Respiratory Syncytial Virus

  • Chapter
  • First Online:
Virus Infected Cells

Part of the book series: Subcellular Biochemistry ((SCBI,volume 106))

  • 623 Accesses

Abstract

During respiratory syncytial virus (RSV) particle assembly, the mature RSV particles form as filamentous projections on the surface of RSV-infected cells. The RSV assembly process occurs at the / on the cell surface that is modified by a virus infection, involving a combination of several different host cell factors and cellular processes. This induces changes in the lipid composition and properties of these lipid microdomains, and the virus-induced activation of associated Rho GTPase signaling networks drives the remodeling of the underlying filamentous actin (F-actin) cytoskeleton network. The modified sites that form on the surface of the infected cells form the nexus point for RSV assembly, and in this review chapter, they are referred to as the RSV assembleome. This is to distinguish these unique membrane microdomains that are formed during virus infection from the corresponding membrane microdomains that are present at the cell surface prior to infection. In this article, an overview of the current understanding of the processes that drive the formation of the assembleome during RSV particle assembly is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson K, King AM, Lerch RA, Wertz GW (1992a) Polylactosaminoglycan modification of the respiratory syncytial virus small hydrophobic (SH) protein: a conserved feature among human and bovine respiratory syncytial viruses. Virology 191:417–430

    Article  CAS  PubMed  Google Scholar 

  • Anderson K, Stott EJ, Wertz GW (1992b) Intracellular processing of the human respiratory syncytial virus fusion glycoprotein: amino acid substitutions affecting folding, transport and cleavage. J Gen Virol 73(Pt 5):1177–1188

    Article  CAS  PubMed  Google Scholar 

  • Arumugham RG, Seid RC Jr, Doyle S, Hildreth SW, Paradiso PR (1989) Fatty acid acylation of the fusion glycoprotein of human respiratory syncytial virus. J Biol Chem 264:10339–10342

    Article  CAS  PubMed  Google Scholar 

  • Azarm KD, Lee B (2020) Differential features of fusion activation within the Paramyxoviridae. Viruses 12(2):161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajorek M, Caly L, Tran KC, Maertens GN, Tripp RA, Bacharach E, Teng MN, Ghildyal R, Jans DA (2014) The Thr205 phosphorylation site within respiratory syncytial virus matrix (M) protein modulates M oligomerization and virus production. J Virol 88:6380–6393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellanger JM, Astier C, Sardet C, Ohta Y, Stossel TP, Debant A (2000) The Rac1- and RhoG-specific GEF domain of trio targets filamin to remodel cytoskeletal actin. Nat Cell Biol 2:888–892

    Article  CAS  PubMed  Google Scholar 

  • Bosco E, van Aalst R, Mcconeghy KW, Silva J, Moyo P, Eliot MN, Chit A, Gravenstein S, Zullo AR (2021) Estimated cardiorespiratory hospitalizations attributable to influenza and respiratory syncytial virus among long-term care facility residents. JAMA Netw Open 4:e2111806

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown G, Aitken J, Rixon HWM, Sugrue RJ (2002a) Caveolin-1 is incorporated into mature respiratory syncytial virus particles during virus assembly on the surface of virus-infected cells. J Gen Virol 83:611–621

    Article  PubMed  Google Scholar 

  • Brown G, Rixon HWM, Sugrue RJ (2002b) Respiratory syncytial virus assembly occurs in GM1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphorylated caveolin-1. J Gen Virol 83:1841–1850

    Article  CAS  PubMed  Google Scholar 

  • Brown G, Jeffree CE, McDonald T, Rixon HW, Aitken JD, Sugrue RJ (2004) Analysis of the interaction between respiratory syncytial virus and lipid-rafts in Hep2 cells during infection. Virology 327:175–185

    Article  CAS  PubMed  Google Scholar 

  • Bukreyev A, Whitehead SS, Murphy BR, Collins PL (1997) Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of the mouse. J Virol 71:8973–8982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke E, Dupuy L, Wall C, Barik S (1998) Role of cellular actin in the gene expression and morphogenesis of human respiratory syncytial virus. Virology 252:137–148

    Article  CAS  PubMed  Google Scholar 

  • Campa CC, Ciraolo E, Ghigo A, Germena G, Hirsch E (2015) Crossroads of PI3K and Rac pathways. Small GTPases 6:71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao D, Gao Y, Roesler C, Rice S, D'cunha P, Zhuang L, Slack J, Domke M, Antonova A, Romanelli S, Keating S, Forero G, Juneja P, Liang B (2020) Cryo-EM structure of the respiratory syncytial virus RNA polymerase. Nat Commun 11:368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Chou HT, Brautigam CA, Xing W, Yang S, Henry L, Doolittle LK, Walz T, Rosen MK (2017) Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites. elife 6:e29795

    Article  PubMed  PubMed Central  Google Scholar 

  • Chichili GR, Rodgers W (2007) Clustering of membrane raft proteins by the actin cytoskeleton. J Biol Chem 282:36682–36691

    Article  CAS  PubMed  Google Scholar 

  • Collins PL (1990) O glycosylation of glycoprotein G of human respiratory syncytial virus is specified within the divergent ectodomain. J Virol 64:4007–4012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins PL, Mottet G (1992) Oligomerization and post-translational processing of glycoprotein G of human respiratory syncytial virus: altered O-glycosylation in the presence of brefeldin a. J Gen Virol 73(Pt 4):849–863

    Article  CAS  PubMed  Google Scholar 

  • Collins PL, Mottet G (1993) Membrane orientation and oligomerization of the small hydrophobic protein of human respiratory syncytial virus. J Gen Virol 74(Pt 7):1445–1450

    Article  CAS  PubMed  Google Scholar 

  • Conley MJ, Short JM, Burns AM, Streetley J, Hutchings J, Bakker SE, Power BJ, Jaffery H, Haney J, Zanetti G, Murcia PR, Stewart M, Fearns R, Vijayakrishnan S, Bhella D (2022) Helical ordering of envelope-associated proteins and glycoproteins in respiratory syncytial virus. EMBO J 41:e109728

    Article  CAS  PubMed  Google Scholar 

  • Cullen LM, Luo B, Wen Z, Zang L, Durr E, Morrison TG (2022) The respiratory syncytial Virus G protein enhances the immune responses to the RSV F protein in an enveloped virus-like particle vaccine candidate. bioRxiv, 2022.09.12.507712

    Google Scholar 

  • Decool H, Gonnin L, Gutsche I, Sizun C, Eléouët JF, Galloux M (2021) Interactions between the nucleoprotein and the phosphoprotein of Pneumoviruses: structural insight for rational Design of Antivirals. Viruses 13(12):2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fearns R, Collins PL (1999) Role of the M2-1 transcription antitermination protein of respiratory syncytial virus in sequential transcription. J Virol 73:5852–5864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman SA, Hendry RM, Beeler JA (1999) Identification of a linear heparin binding domain for human respiratory syncytial virus attachment glycoprotein G. J Virol 73:6610–6617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Förster A, Maertens GN, Farrell PJ, Bajorek M (2015) Dimerization of matrix protein is required for budding of respiratory syncytial virus. J Virol 89:4624–4635

    Article  PubMed  PubMed Central  Google Scholar 

  • Gan SW, Ng L, Lin X, Gong X, Torres J (2008) Structure and ion channel activity of the human respiratory syncytial virus (hRSV) small hydrophobic protein transmembrane domain. Protein Sci 17:813–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García J, García-Barreno B, Vivo A, Melero JA (1993) Cytoplasmic inclusions of respiratory syncytial virus-infected cells: formation of inclusion bodies in transfected cells that coexpress the nucleoprotein, the phosphoprotein, and the 22K protein. Virology 195:243–247

    Article  PubMed  Google Scholar 

  • Ghildyal R, Mills J, Murray M, Vardaxis N, Meanger J (2002) Respiratory syncytial virus matrix protein associates with nucleocapsids in infected cells. J Gen Virol 83:753–757

    Article  CAS  PubMed  Google Scholar 

  • Ghildyal R, Li D, Peroulis I, Shields B, Bardin PG, Teng MN, Collins PL, Meanger J, Mills J (2005) Interaction between the respiratory syncytial virus G glycoprotein cytoplasmic domain and the matrix protein. J Gen Virol 86:1879–1884

    Article  CAS  PubMed  Google Scholar 

  • Gilman MSA, Liu C, Fung A, Behera I, Jordan P, Rigaux P, Ysebaert N, Tcherniuk S, Sourimant J, Eléouët JF, Sutto-Ortiz P, Decroly E, Roymans D, Jin Z, Mclellan JS (2019) Structure of the respiratory syncytial virus polymerase complex. Cell 179:193–204.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Reyes L, Ruiz-Argüello MB, García-Barreno B, Calder L, López JA, Albar JP, Skehel JJ, Wiley DC, Melero JA (2001) Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proc Natl Acad Sci U S A 98:9859–9864

    Article  PubMed  PubMed Central  Google Scholar 

  • Gower TL, Graham BS (2001) Antiviral activity of lovastatin against respiratory syncytial virus in vivo and in vitro. Antimicrob Agents Chemother 45:1231–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gower TL, Peeples ME, Collins PL, Graham BS (2001) RhoA is activated during respiratory syncytial virus infection. Virology 283:188–196

    Article  CAS  PubMed  Google Scholar 

  • Gower TL, Pastey MK, Peeples ME, Collins PL, McCurdy LH, Hart TK, Guth A, Johnson TR, Graham BS (2005) RhoA signaling is required for respiratory syncytial virus-induced syncytium formation and filamentous virion morphology. J Virol 79:5326–5336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallak LK, Collins PL, Knudson W, Peeples ME (2000a) Iduronic acid-containing glycosaminoglycans on target cells are required for efficient respiratory syncytial virus infection. Virology 271:264–275

    Article  CAS  PubMed  Google Scholar 

  • Hallak LK, Spillmann D, Collins PL, Peeples ME (2000b) Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J Virol 74:10508–10513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heminway BR, Yu Y, Tanaka Y, Perrine KG, Gustafson E, Bernstein JM, Galinski MS (1994) Analysis of respiratory syncytial virus F, G, and SH proteins in cell fusion. Virology 200:801–805

    Article  CAS  PubMed  Google Scholar 

  • Henderson G, Murray J, Yeo RP (2002) Sorting of the respiratory syncytial virus matrix protein into detergent-resistant structures is dependent on cell-surface expression of the glycoproteins. Virology 300:244–254

    Article  CAS  PubMed  Google Scholar 

  • Huong TN, Iyer Ravi L, Tan BH, Sugrue RJ (2016) Evidence for a biphasic mode of respiratory syncytial virus transmission in permissive HEp2 cell monolayers. Virol J 13:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Huong TN, Yan Y, Jumat MR, Lui J, Tan BH, Wang Y, Sugrue RJ (2018) A sustained antiviral host response in respiratory syncytial virus infected human nasal epithelium does not prevent progeny virus production. Virology 521:20–32

    Article  CAS  PubMed  Google Scholar 

  • Huong TN, Iyer LR, Lui J, DY Wang, Tan BH, Sugrue RJ (2023) The respiratory syncytial virus SH protein is incorporated into infectious virus particles that form on virus-infected cells. Virology 580:28–40. https://doi.org/10.1016/j.virol.2023.01.013

    Article  CAS  PubMed  Google Scholar 

  • Jeffree CE, Rixon HW, Brown G, Aitken J, Sugrue RJ (2003) Distribution of the attachment (G) glycoprotein and GM1 within the envelope of mature respiratory syncytial virus filaments revealed using field emission scanning electron microscopy. Virology 306:254–267

    Article  CAS  PubMed  Google Scholar 

  • Jeffree CE, Brown G, Aitken J, Su-Yin DY, Tan BH, Sugrue RJ (2007) Ultrastructural analysis of the interaction between F-actin and respiratory syncytial virus during virus assembly. Virology 369:309–323

    Article  CAS  PubMed  Google Scholar 

  • Jeong KI, Piepenhagen PA, Kishko M, Dinapoli JM, Groppo RP, Zhang L, Almond J, Kleanthous H, Delagrave S, Parrington M (2015) CX3CR1 is expressed in differentiated human ciliated airway cells and co-localizes with respiratory syncytial virus on cilia in a G protein-dependent manner. PLoS One 10:e0130517

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson SM, Mcnally BA, Ioannidis I, Flano E, Teng MN, Oomens AG, Walsh EE, Peeples ME (2015) Respiratory syncytial virus uses CX3CR1 as a receptor on primary human airway epithelial cultures. PLoS Pathog 11:e1005318

    Article  PubMed  PubMed Central  Google Scholar 

  • Jumat MR, Nguyen Huong T, Wong P, Loo LH, Tan BH, Fenwick F, Toms GL, Sugrue RJ (2014) Imaging analysis of human metapneumovirus-infected cells provides evidence for the involvement of F-actin and the raft-lipid microdomains in virus morphogenesis. Virol J 11:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Jumat MR, Yan Y, Ravi LI, Wong P, Huong TN, Li C, Tan BH, Wang Y, Sugrue RJ (2015) Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia. Virology 484:395–411

    Article  CAS  PubMed  Google Scholar 

  • Kumaria R, Iyer LR, Hibberd ML, Simões EA, Sugrue RJ (2011) Whole genome characterization of non-tissue culture adapted HRSV strains in severely infected children. Virol J 8:372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuppan JP, Mitrovich MD, Vahey MD (2021) A morphological transformation in respiratory syncytial virus leads to enhanced complement deposition. elife 10:e70575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langedijk JP, Schaaper WM, Meloen RH, Van Oirschot JT (1996) Proposed three-dimensional model for the attachment protein G of respiratory syncytial virus. J Gen Virol 77(Pt 6):1249–1257

    Article  CAS  PubMed  Google Scholar 

  • Langedijk JP, de Groot BL, Berendsen HJ, van Oirschot JT (1998) Structural homology of the central conserved region of the attachment protein G of respiratory syncytial virus with the fourth subdomain of 55-kDa tumor necrosis factor receptor. Virology 243:293–302

    Article  CAS  PubMed  Google Scholar 

  • Leemans A, Boeren M, van der Gucht W, Martinet W, Caljon G, Maes L, Cos P, Delputte P (2019) Characterization of the role of N-glycosylation sites in the respiratory syncytial virus fusion protein in virus replication, syncytium formation and antigenicity. Virus Res 266:58–68

    Article  CAS  PubMed  Google Scholar 

  • Li D, Jans DA, Bardin PG, Meanger J, Mills J, Ghildyal R (2008) Association of respiratory syncytial virus M protein with viral nucleocapsids is mediated by the M2-1 protein. J Virol 82:8863–8870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HM, Ghildyal R, Hu M, Tran KC, Starrs LM, Mills J, Teng MN, Jans DA (2021) Respiratory syncytial virus matrix protein-chromatin association is key to transcriptional inhibition in infected cells. Cells 10(10):2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wang X, Blau DM, Caballero MT, Feikin DR, Gill CJ, Madhi SA, Omer SB, Simões EAF, Campbell H, Pariente AB, Bardach D, Bassat Q, Casalegno JS, Chakhunashvili G, Crawford N, Danilenko D, Do LAH, Echavarria M, Gentile A, Gordon A, Heikkinen T, Huang QS, Jullien S, Krishnan A, Lopez EL, Markić J, Mira-Iglesias A, Moore HC, Moyes J, Mwananyanda L, Nokes DJ, Noordeen F, Obodai E, Palani N, Romero C, Salimi V, Satav A, Seo E, Shchomak Z, Singleton R, Stolyarov K, Stoszek SK, von Gottberg A, Wurzel D, Yoshida LM, Yung CF, Zar HJ, Nair H (2022) Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: a systematic analysis. Lancet 399:2047–2064

    Article  PubMed  PubMed Central  Google Scholar 

  • Liljeroos L, Krzyzaniak MA, Helenius A, Butcher SJ (2013) Architecture of respiratory syncytial virus revealed by electron cryotomography. Proc Natl Acad Sci U S A 110:11133–11138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low KW, Tan T, Ng K, Tan BH, Sugrue RJ (2008) The RSV F and G glycoproteins interact to form a complex on the surface of infected cells. Biochem Biophys Res Commun 366:308–313

    Article  CAS  PubMed  Google Scholar 

  • Ludwig A, Howard G, Mendoza-Topaz C, Deerinck T, Mackey M, Sandin S, Ellisman MH, Nichols BJ (2013) Molecular composition and ultrastructure of the caveolar coat complex. PLoS Biol 11:e1001640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig A, Nguyen TH, Leong D, Ravi LI, Tan BH, Sandin S, Sugrue RJ (2017) Caveolae provide a specialized membrane environment for respiratory syncytial virus assembly. J Cell Sci 130:1037–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malhi M, Norris MJ, Duan W, Moraes TJ, Maynes JT (2021) Statin-mediated disruption of rho GTPase prenylation and activity inhibits respiratory syncytial virus infection. Commun Biol 4:1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marty A, Meanger J, Mills J, Shields B, Ghildyal R (2004) Association of matrix protein of respiratory syncytial virus with the host cell membrane of infected cells. Arch Virol 149:199–210

    Article  CAS  PubMed  Google Scholar 

  • McCurdy LH, Graham BS (2003) Role of plasma membrane lipid microdomains in respiratory syncytial virus filament formation. J Virol 77:1747–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald TP, Sugrue RJ (2007) The use of two-dimensional SDS-PAGE to analyze the glycan heterogeneity of the respiratory syncytial virus fusion protein. Methods Mol Biol 379:97–108

    Article  CAS  PubMed  Google Scholar 

  • McDonald TP, Pitt AR, Brown G, Rixon HW, Sugrue RJ (2004) Evidence that the respiratory syncytial virus polymerase complex associates with lipid rafts in virus-infected cells: a proteomic analysis. Virology 330:147–157

    Article  CAS  PubMed  Google Scholar 

  • Mclellan JS, Ray WC, Peeples ME (2013) Structure and function of respiratory syncytial virus surface glycoproteins. Curr Top Microbiol Immunol 372:83–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehedi M, Mccarty T, Martin SE, Le Nouën C, Buehler E, Chen YC, Smelkinson M, Ganesan S, Fischer ER, Brock LG, Liang B, Munir S, Collins PL, Buchholz UJ (2016) Actin-related protein 2 (ARP2) and virus-induced Filopodia facilitate human respiratory syncytial virus spread. PLoS Pathog 12:e1006062

    Article  PubMed  PubMed Central  Google Scholar 

  • Money VA, Mcphee HK, Mosely JA, Sanderson JM, Yeo RP (2009) Surface features of a Mononegavirales matrix protein indicate sites of membrane interaction. Proc Natl Acad Sci U S A 106:4441–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, O’Brien KL, Roca A, Wright PF, Bruce N, Chandran A, Theodoratou E, Sutanto A, Sedyaningsih ER, Ngama M, Munywoki PK, Kartasasmita C, Simões EA, Rudan I, Weber MW, Campbell H (2010) Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375:1545–1555

    Article  PubMed  PubMed Central  Google Scholar 

  • Navaratnarajah CK, Generous AR, Yousaf I, Cattaneo R (2020) Receptor-mediated cell entry of paramyxoviruses: mechanisms, and consequences for tropism and pathogenesis. J Biol Chem 295:2771–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmsted RA, Collins PL (1989) The 1A protein of respiratory syncytial virus is an integral membrane protein present as multiple, structurally distinct species. J Virol 63:2019–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmsted RA, Elango N, Prince GA, Murphy BR, Johnson PR, Moss B, Chanock RM, Collins PL (1986) Expression of the F glycoprotein of respiratory syncytial virus by a recombinant vaccinia virus: comparison of the individual contributions of the F and G glycoproteins to host immunity. Proc Natl Acad Sci U S A 83:7462–7466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papalazarou V, Machesky LM (2021) The cell pushes back: the Arp2/3 complex is a key orchestrator of cellular responses to environmental forces. Curr Opin Cell Biol 68:37–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popowicz GM, Schleicher M, Noegel AA, Holak TA (2006) Filamins: promiscuous organizers of the cytoskeleton. Trends Biochem Sci 31:411–419

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan A, Yeo D, Brown G, Myaing MZ, Iyer LR, Fleck R, Tan BH, Aitken J, Sanmun D, Tang K, Yarwood A, Brink J, Sugrue RJ (2010) Protein analysis of purified respiratory syncytial virus particles reveals an important role for heat shock protein 90 in virus particle assembly. Mol Cell Proteomics 9:1829–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Ramírez D, Salgado-Lucio ML, Roa-Espitia AL, Fierro R, González-Márquez H, Cordero-Martínez J, Hernández-González EO (2020) Rac1 is necessary for capacitation and acrosome reaction in Guinea pig spermatozoa. J Cell Biochem 121:2864–2876

    Article  PubMed  Google Scholar 

  • Ravi LI, Liang L, Wong PS, Brown G, Tan BH, Sugrue RJ (2013) Increased hydroxymethylglutaryl coenzyme a reductase activity during respiratory syncytial virus infection mediates actin dependent inter-cellular virus transmission. Antivir Res 100:259–268

    Article  CAS  PubMed  Google Scholar 

  • Ravi LI, Tan TJ, Tan BH, Sugrue RJ (2021) Virus-induced activation of the rac1 protein at the site of respiratory syncytial virus assembly is a requirement for virus particle assembly on infected cells. Virology 557:86–99

    Article  CAS  PubMed  Google Scholar 

  • Rixon HWM, Brown C, Brown G, Sugrue RJ (2002) Multiple glycosylated forms of the respiratory syncytial virus fusion protein are expressed in virus-infected cells. J Gen Virol 83:61–66

    Article  CAS  PubMed  Google Scholar 

  • Rixon HWM, Brown G, Aitken J, McDonald T, Graham S, Sugrue RJ (2004) The small hydrophobic (SH) protein accumulates within lipid-raft structures of the Golgi complex during respiratory syncytial virus infection. J Gen Virol 85:1153–1165

    Article  CAS  PubMed  Google Scholar 

  • Rixon HWM, Brown G, Murray JT, Sugrue RJ (2005) The respiratory syncytial virus small hydrophobic protein is phosphorylated via a mitogen-activated protein kinase p38-dependent tyrosine kinase activity during virus infection. J Gen Virol 86:375–384

    Article  CAS  PubMed  Google Scholar 

  • Roberts SR, Compans RW, Wertz GW (1995) Respiratory syncytial virus matures at the apical surfaces of polarized epithelial cells. J Virol 69:2667–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell RF, McDonald JU, Ivanova M, Zhong Z, Bukreyev A, Tregoning JS (2015) Partial attenuation of respiratory syncytial virus with a deletion of a small hydrophobic gene is associated with elevated interleukin-1β responses. J Virol 89:8974–8981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santangelo PJ, Bao G (2007) Dynamics of filamentous viral RNPs prior to egress. Nucleic Acids Res 35:3602–3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santangelo P, Nitin N, Laconte L, Woolums A, Bao G (2006) Live-cell characterization and analysis of a clinical isolate of bovine respiratory syncytial virus, using molecular beacons. J Virol 80:682–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheid A, Choppin PW (1977) Two disulfide-linked polypeptide chains constitute the active F protein of paramyxoviruses. Virology 80:54–66

    Article  CAS  PubMed  Google Scholar 

  • Schmitt AP, Lamb RA (2005) Influenza virus assembly and budding at the viral budozone. Adv Virus Res 64:383–416

    Article  CAS  PubMed  Google Scholar 

  • Sedeyn K, Schepens B, Saelens X (2019) Respiratory syncytial virus nonstructural proteins 1 and 2: exceptional disrupters of innate immune responses. PLoS Pathog 15:e1007984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sezgin E, Levental I, Mayor S, Eggeling C (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18:361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahriari S, Wei KJ, Ghildyal R (2018) Respiratory syncytial virus matrix (M) protein interacts with actin in vitro and in cell culture. Viruses 10(10):535

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi T, Mcallister DA, O’Brien KL, Simoes EAF, Madhi SA, Gessner BD, Polack FP, Balsells E, Acacio S, Aguayo C, Alassani I, ALI A, Antonio M, Awasthi S, Awori JO, Azziz-Baumgartner E, Baggett HC, Baillie VL, Balmaseda A, Barahona A, Basnet S, Bassat Q, Basualdo W, Bigogo G, Bont L, Breiman RF, Brooks WA, Broor S, Bruce N, Bruden D, Buchy P, Campbell S, Carosone-Link P, Chadha M, Chipeta J, Chou M, Clara W, Cohen C, de Cuellar E, Dang DA, Dash-Yandag B, Deloria-Knoll M, Dherani M, Eap T, Ebruke BE, Echavarria M, de Freitas Lázaro Emediato CC, Fasce RA, Feikin DR, Feng L, Gentile A, Gordon A, Goswami D, Goyet S, Groome M, Halasa N, Hirve S, Homaira N, Howie SRC, Jara J, Jroundi I, Kartasasmita CB, Khuri-Bulos N, Kotloff KL, Krishnan A, Libster R, Lopez O, Lucero MG, Lucion F, Lupisan SP, Marcone DN, Mccracken JP, Mejia M, Moisi JC, Montgomery JM, Moore DP, Moraleda C, Moyes J, Munywoki P, Mutyara K, Nicol MP, Nokes DJ, Nymadawa P, Da Costa Oliveira MT, Oshitani H, Pandey N, Paranhos-Baccalà G, Phillips LN, Picot VS, Rahman M, Rakoto-Andrianarivelo M, Rasmussen ZA, Rath BA, Robinson A, Romero C, Russomando G, Salimi V, Sawatwong P, Scheltema N, Schweiger B et al (2017) Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet 390:946–958

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugrue RJ, Brown C, Brown G, Aitken J, Mc LRHW (2001) Furin cleavage of the respiratory syncytial virus fusion protein is not a requirement for its transport to the surface of virus-infected cells. J Gen Virol 82:1375–1386

    Article  CAS  PubMed  Google Scholar 

  • Thomas KW, Monick MM, Staber JM, Yarovinsky T, Carter AB, Hunninghake GW (2002) Respiratory syncytial virus inhibits apoptosis and induces NF-kappa B activity through a phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem 277:492–501

    Article  CAS  PubMed  Google Scholar 

  • Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, Fukuda K (2003) Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289:179–186

    Article  PubMed  Google Scholar 

  • Triantafilou K, Kar S, Vakakis E, Kotecha S, Triantafilou M (2013) Human respiratory syncytial virus viroporin SH: a viral recognition pathway used by the host to signal inflammasome activation. Thorax 68:66–75

    Article  PubMed  Google Scholar 

  • Tripp RA, Jones LP, Haynes LM, Zheng H, Murphy PM, Anderson LJ (2001) CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. Nat Immunol 2:732–738

    Article  CAS  PubMed  Google Scholar 

  • Ulloa L, Serra R, Asenjo A, Villanueva N (1998) Interactions between cellular actin and human respiratory syncytial virus (HRSV). Virus Res 53:13–25

    Article  CAS  PubMed  Google Scholar 

  • van den Hoogen BG, Bestebroer TM, Osterhaus AD, Fouchier RA (2002) Analysis of the genomic sequence of a human metapneumovirus. Virology 295:119–132

    Article  PubMed  Google Scholar 

  • Wang M, Casey PJ (2016) Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol 17:110–122

    Article  CAS  PubMed  Google Scholar 

  • Yeo DS, Chan R, Brown G, Ying L, Sutejo R, Aitken J, Tan BH, Wenk MR, Sugrue RJ (2009) Evidence that selective changes in the lipid composition of raft-membranes occur during respiratory syncytial virus infection. Virology 386:168–182

    Article  CAS  PubMed  Google Scholar 

  • Zimmer G, Budz L, Herrler G (2001) Proteolytic activation of respiratory syncytial virus fusion protein. Cleavage at two furin consensus sequences. J Biol Chem 276:31642–31650

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would also wish to acknowledge previous group members at the MRC Virology Unit in Glasgow and at the Nanyang Technological University in Singapore, including previous colleagues and collaborators Gaie Brown and Jim Aitkin, (Institute of Virology, Glasgow UK) and Chris Jeffree (EMCB, Biological Sciences EM Facility, University of Edinburgh UK) for light and electron microscopy imaging of RSV. In addition, we acknowledge previous funding support to RJS from the Medical Research Council (UK), National Medical Research Council (Singapore), Singapore-MIT Alliance for Research and Technology (Singapore), and the Ministry of Education (Singapore).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Sugrue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sugrue, R.J., Tan, B.H. (2023). Defining the Assembleome of the Respiratory Syncytial Virus. In: Vijayakrishnan, S., Jiu, Y., Harris, J.R. (eds) Virus Infected Cells. Subcellular Biochemistry, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-031-40086-5_9

Download citation

Publish with us

Policies and ethics