Skip to main content

A Pedestrian Detection Case Study for a Traffic Light Controller

  • Chapter
  • First Online:
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing

Abstract

A pedestrian detection system in a traffic light controller is studied. The system is based on Deep Neural Networks (DNNs). We explore several network architectures and hardware platforms to identify the most suitable solution under the given constraints of latency, cost, and precision. Specifically, we study altogether 13 networks from the MobileNet, Yolo, ResNet, and EfficientDet families and 6 platforms based on Nvidia and Intel platforms, conducting 383 experiments. We find that several network-platform combinations meet the given requirements of maximum 100 ms inference latency and 0.9 mean average precision. The most promising are Yolo v5 networks on Nvidia Jetson TX2 and IntelNUC GPU hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf (accessed: 2022-03-22).

  2. 2.

    https://docs.openvino.ai/latest/index.html (accessed: 2022-03-22).

  3. 3.

    https://developer.nvidia.com/tensorrt (accessed: 2022-03-22).

  4. 4.

    https://developer.nvidia.com/cuda-zone (accessed: 2022-03-22).

  5. 5.

    https://docs.openvino.ai/2021.4/openvino_docs_IE_DG_Device_Plugins.html?highlight=devices (accessed: 2022-03-22).

  6. 6.

    https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/ (accessed: 2022-02-27).

  7. 7.

    https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/ (accessed: 2022-02-27).

  8. 8.

    https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano (accessed: 2022-02-27).

  9. 9.

    https://www.intel.com/content/www/us/en/developer/tools/neural-compute-stick/overview.html (accessed: 2022-03-04).

  10. 10.

    https://www.intel.com/content/www/us/en/products/details/nuc.html (accessed: 2022-03-04).

  11. 11.

    https://github.com/embedded-machine-learning/scripts-and-guides.

References

  1. Angelova, A., Krizhevsky, A., Vanhoucke, V.: Pedestrian Detection with a Large-Field-Of-View Deep Network. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2015)

    Google Scholar 

  2. Angelova, A., Krizhevsky, A., Vanhoucke, V., Ogale, A., Ferguson, D.: Real-Time Pedestrian Detection With Deep Network Cascades. In: Proceedings of the British Machine Vision Conference (BMVC) (2015)

    Google Scholar 

  3. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple Online and Realtime Tracking. In: Proceedings of the IEEE International Conference on Image Processing (ICIP) (2016)

    Google Scholar 

  4. Biddulph, A., Houliston, T., Mendes, A., Chalup, S.K.: Comparing computing platforms for deep learning on a humanoid robot. In: ICONIP (2018)

    Google Scholar 

  5. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: Optimal speed and accuracy of object detection. ArXiv, abs/2004.10934 (2020)

    Google Scholar 

  6. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., Beijbom, O.: nuScenes: A multimodal dataset for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  7. Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., Leal-Taixé, L.: MOT20: A benchmark for Multi Object Tracking in Crowded Scenes. arXiv Corr, abs/1906.04567 (2020)

    Google Scholar 

  8. Deng, L., Li, G., Han, S., Shi, L., Xie, Y.: Model compression and hardware acceleration for neural networks: A comprehensive survey. Proc. IEEE 108(4), 485–532 (2020)

    Article  Google Scholar 

  9. Ding, L., Wang, Y., Laganière, R., Luo, X., Huang, D., Zhang, H.: Learning efficient single stage pedestrian detection by squeeze-and-excitation network. Neural Comput. Applic. 33(23), 16697–16712 (2021)

    Article  Google Scholar 

  10. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: A benchmark. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 304–311 (2009)

    Google Scholar 

  11. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian Detection: An Evaluation of the State of the Art. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 34(4), 743–761 (2012)

    Google Scholar 

  12. Ertler, C., Possegger, H., Opitz, M., Bischof, H.: Pedestrian Detection in RGB-D Images from an Elevated Viewpoint. In: Proceedings of the Computer Vision Winter Workshop (CVWW) (2017)

    Google Scholar 

  13. Ertler, C., Possegger, H., Opitz, M., Bischof, H.: An Intent-Based Automated Traffic Light for Pedestrians. In: Proceedings of the IEEE International Conference on Advanced Video and Signal based Surveillance (AVSS) (2018)

    Google Scholar 

  14. Ess, A., Leibe, B., Van Gool, L.: Depth and appearance for mobile scene analysis. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  15. Ferryman, J.M., Shahrokni, A.: PETS 2009: Dataset and Challenge. In: Proceedings of the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (Winter-PETS) (2009)

    Google Scholar 

  16. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  17. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A survey of quantization methods for efficient neural network inference. CoRR, abs/2103.13630 (2021)

    Google Scholar 

  18. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  19. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 38(1), 142–158 (2016)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  21. Kálmán, R.E.: A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep Convolutional Neural Networks. In: Proceedings of the Conference on Neural Information Processing Systems (NeurIPS) (2012)

    Google Scholar 

  23. Kuhn, H.W.: The Hungarian Method for the Assignment Problem. Naval Research Logistics Quarterly 2, 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Y., Hao, C., Zhang, X., Liu, X., Chen, Y., Xiong, J., Hwu, W.m., Chen, D.: EDD: Efficient differentiable DNN architecture and implementation co-search for embedded AI solutions. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6 (2020)

    Google Scholar 

  25. Li, Y., Gong, R., Tan, X., Yang, Y., Hu, P., Zhang, Q., Yu, F., Wang, W., Gu, S.: BRECQ: pushing the limit of post-training quantization by block reconstruction. CoRR, abs/2102.05426 (2021)

    Google Scholar 

  26. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2017)

    Google Scholar 

  27. Lin, T.Y., Maire, M., Belongie, S.J., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV (2014)

    Google Scholar 

  28. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: Single shot multibox detector. In: ECCV (2016)

    Google Scholar 

  29. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: Single Shot MultiBox Detector. In: Proceedings of the European Conference on Computer Vision (ECCV) (2016)

    Google Scholar 

  30. Ma, X., Lin, S., Ye, S., He, Z., Zhang, L., Yuan, G., Tan, S., Fan, D., Qian, X., Lin, X., Ma, K., Wang, Y.: Non-structured DNN weight pruning–is it beneficial in any platform? In: IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15 (2021)

    Google Scholar 

  31. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: MOT16: A Benchmark for Multi-Object Tracking. arXiv Corr, abs/1603.00831 (2016)

    Google Scholar 

  32. Mittal, S.: A survey on optimized implementation of deep learning models on the NVIDIA jetson platform. J. Syst. Archit. 97, 428–442 (2019)

    Article  Google Scholar 

  33. Munkres, J.: Algorithms for the Assignment and Transportation Problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  34. Murthy, C.B., Hashmi, M.F., Keskar, A.G.: Optimized MobileNet + SSD: a real-time pedestrian detection on a low-end edge device. International Journal of Multimedia Information Retrieval 10(3), 171–184 (2021)

    Article  Google Scholar 

  35. Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp. 555–562 (1998)

    Google Scholar 

  36. Possegger, H., Mauthner, T., Roth, P.M., Bischof, H.: Occlusion Geodesics for Online Multi-Object Tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  37. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You Only Look Once: Unified, Real-Time Object Detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  38. Redmon, J., Farhadi, A.: YOLO9000: Better, Faster, Stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  39. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. ArXiv, abs/1804.02767 (2018)

    Google Scholar 

  40. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In: Proceedings of the Conference on Neural Information Processing Systems (NeurIPS) (2015)

    Google Scholar 

  41. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  42. Sadeghian, A., Alahi, A., Savarese, S.: Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  43. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  44. Sha, M., Boukerche, A.: Performance evaluation of CNN-based pedestrian detectors for autonomous vehicles. Ad Hoc Netw. 128, 102784 (2022)

    Article  Google Scholar 

  45. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015)

    Google Scholar 

  46. Solera, F., Calderara, S., Cucchiara, R.: Learning to Divide and Conquer for Online Multi-Target Tracking. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  47. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine, B., et al. Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  48. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J.: Rethinking the Inception Architecture for Computer Vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  49. Tomè, D., Monti, F., Baroffio, L., Bondi, L., Tagliasacchi, M., Tubaro, S.: Deep convolutional neural networks for pedestrian detection. Signal Process. Image Commun. 47, 482–489 (2016)

    Article  Google Scholar 

  50. Tsai, C.Y., Su, Y.K.: MobileNet-JDE: a lightweight multi-object tracking model for embedded systems. In: Multimedia Tools and Applications (2022)

    Google Scholar 

  51. Wang, E., Davis, J.J., Zhao, R., Ng, H.-C., Niu, X., Luk, W., Cheung, P.Y.K., Constantinides, G.A.: Deep neural network approximation for custom hardware: Where we’ve been, where we’re going. CoRR, abs/1901.06955 (2019)

    Google Scholar 

  52. Wojke, N., Bewley, A., Paulus, D.: Simple Online and Realtime Tracking with a Deep Association Metric (2017)

    Google Scholar 

  53. Wu, J., Men, Y., Chen, D.: Lightweight network and parallel computing for fast pedestrian detection. Int. J. Circuit Theory Appl. 49(4), 1040–1049 (2021)

    Article  Google Scholar 

  54. Zhang, X., Lu, H., Hao, C., Li, J., Cheng, B., Li, Y., Rupnow, K., Xiong, J., Huang, T., Shi, H., Hwu, W.M., Chen, D.: SkyNet: a hardware-efficient method for object detection and tracking on embedded systems. In: Dhillon, I., Papailiopoulos, D., Sze, V. (eds.) Proceedings of Machine Learning and Systems, vol. 2, pp. 216–229 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Jantsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wendt, A. et al. (2024). A Pedestrian Detection Case Study for a Traffic Light Controller. In: Pasricha, S., Shafique, M. (eds) Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-39932-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39932-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39931-2

  • Online ISBN: 978-3-031-39932-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics