Skip to main content

Advanced Glycation End Products and Diabetes

  • Chapter
  • First Online:
Obesity, Diabetes and Inflammation

Part of the book series: Contemporary Endocrinology ((COE))

  • 267 Accesses

Abstract

Advanced glycation end products (AGEs), both endogenously produced and food-derived, are generated by the non-enzymatic glycation of complex biomolecules. Persistently increased AGEs levels could lead to dysfunction and organ damage via inducing specific signaling and/or directly modifying proteins resulting in the loss of their structure and function. Concerning diabetes and diabetic complications, AGEs are toxic to β-cells and significantly contribute to the establishment of oxidative stress, inflammation, and insulin resistance in various types of cells and tissues. Studies have revealed an association between AGEs and the development and progression of diabetic complications. Various systems could be targeted, with most findings linking high levels of AGEs with diabetic complications in the cardiovascular system, the nervous system, and the kidneys, even after establishing strict glycemic control. Diabetes and diabetic complications seem to be acquiring epidemic nature worldwide. The modern diet, being a substantial source of AGEs, is probably one of the culprits in this situation. AGEs are involved in both the induction and the progression of diabetes. Preventing and managing diabetes and its complications requires special attention to nutritional and pharmaceutical strategies that neutralize AGEs, block their actions, or improve the body’s endogenous antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGE:

Advanced glycation end-product

AGER:

AGE receptor

AP1:

Activator protein 1

CML:

-carboxymethyl-lysine

CVD:

Cardiovascular disease

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-to-mesenchymal transition

Erk1/2:

Extracellular signal-regulated kinase

ET-1:

Endothelin-1

FOXO:

Forkhead family of transcription factors

GLP-1:

Glucagon-like peptide 1

GLUT4:

Glucose transporter type 4

GOLD:

Glyoxal-lysine-dimer

GSH:

Glutathione

IAPP:

Islet amyloid peptide

IGF:

Insulin-like growth factor

IL-6:

Interleukin 6

IRS-1:

Insulin receptor substrate 1

JAK/STAT:

Janus kinase-signal transducer and activator of transcription

JNK:

c-Jun N-terminal kinase

LDL:

Low-density lipoprotein

LOX-1:

Lectin-like oxidized low-density lipoprotein receptor 1

MAPK:

Mitogen-activated protein kinase

MCP-1 (s. CCL2):

Monocyte chemoattractant protein 1

MG:

Methylglyoxal

MMP:

Matrix metalloproteinases

NF-κB:

Nuclear factor kappa B

Nrf2:

Nuclear factor erythroid 2-related factor 2

PAI-1:

Plasminogen activator inhibitor 1

PDGF:

Platelet-derived growth factor

PDX-1:

Pancreatic and duodenal homeobox 1

PI3K:

Phosphoinositide 3-kinase

PKB:

Protein kinase B

PKC:

Protein kinase C

PRRs:

Pattern recognition receptors

RAGE:

Receptor for advanced glycation end products

RAS:

Renin–angiotensin system

ROS:

Reactive oxygen species

SAPK:

Stress-activated protein kinase

SIRT1:

Sirtuin 1

Stab:

Stabilin

TGF-β:

Transforming growth factor beta

T2D:

Type 2 diabetes mellitus

TLR4:

Toll-like receptor 4

TNFα:

Tumor necrosis factor alpha

Treg:

Regulatory T cells

VEGF:

Vascular endothelial growth factor

References

  1. Maillard L. Action des acides amines sur les sucres: formation des melanoidines par voie Methodique. C R Acad Sci (Paris). 1912;154:66–8.

    CAS  Google Scholar 

  2. Cerami C, Founds H, Nicholl I, et al. Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci U S A. 1997;94:13915–20.

    CAS  Google Scholar 

  3. Garay-Sevilla ME, Rojas A, Portero-Otin M, Uribarri J. Dietary AGEs as exogenous boosters of inflammation. Nutrients. 2021;13(8):2802. https://doi.org/10.3390/NU13082802.

    Article  CAS  Google Scholar 

  4. Thornalley PJ. Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification—a role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol. 1996;27:565–73.

    CAS  Google Scholar 

  5. Vistoli G, de Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res. 2013;47(Suppl 1):3–27.

    CAS  Google Scholar 

  6. Schalkwijk CG, Stehouwer CDA, van Hinsbergh VWM. Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification. Diabetes Metab Res Rev. 2004;20:369–82.

    CAS  Google Scholar 

  7. Khalid M, Petroianu G, Adem A. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomol Ther. 2022;12(4):542. https://doi.org/10.3390/BIOM12040542.

    Article  CAS  Google Scholar 

  8. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44:129–46.

    CAS  Google Scholar 

  9. Huebschmann AG, Regensteiner JG, Vlassara H, Reusch JEB. Diabetes and advanced glycoxidation end products. Diabetes Care. 2006;29:1420–32.

    CAS  Google Scholar 

  10. Dimitropoulos A, Rosado CJ, Thomas MC. Dicarbonyl-mediated AGEing and diabetic kidney disease. J Nephrol. 2020;33:909–15.

    CAS  Google Scholar 

  11. Twarda-clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11(8):1312. https://doi.org/10.3390/CELLS11081312.

    Article  CAS  Google Scholar 

  12. Snelson M, Coughlan MT. Dietary advanced glycation end products: digestion, metabolism and modulation of gut microbial ecology. Nutrients. 2019;11(2):215. https://doi.org/10.3390/NU11020215.

    Article  CAS  Google Scholar 

  13. Zamora R, Hidalgo FJ. Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Crit Rev Food Sci Nutr. 2007;45:49–59. https://doi.org/10.1080/10408690590900117.

    Article  CAS  Google Scholar 

  14. Laroque D, Inisan C, Berger C, Vouland É, Dufossé L, Guérard F. Kinetic study on the Maillard reaction. Consideration of sugar reactivity. Food Chem. 2008;111:1032–42.

    CAS  Google Scholar 

  15. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker GE, Vlassara H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–16.e12. https://doi.org/10.1016/J.JADA.2010.03.018.

    Article  Google Scholar 

  16. Nicholl ID, Stitt AW, Moore JE, Ritchie AJ, Archer DB, Bucala R. Increased levels of advanced glycation endproducts in the lenses and blood vessels of cigarette smokers. Mol Med. 1998;4:594.

    CAS  Google Scholar 

  17. Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, Vlassara H. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci. 2007;62:427–33.

    Google Scholar 

  18. Peppa M, Mavroeidi I. Experimental animal studies support the role of dietary advanced glycation end products in health and disease. Nutrients. 2021;13(10):3467. https://doi.org/10.3390/NU13103467.

    Article  CAS  Google Scholar 

  19. Vlassara H, Striker GE. Advanced glycation endproducts in diabetes and diabetic complications. Endocrinol Metab Clin N Am. 2013;42:697–719.

    Google Scholar 

  20. van Nguyen C. Toxicity of the AGEs generated from the Maillard reaction: on the relationship of food-AGEs and biological-AGEs. Mol Nutr Food Res. 2006;50:1140–9.

    CAS  Google Scholar 

  21. Scheckhuber CQ. Studying the mechanisms and targets of glycation and advanced glycation end-products in simple eukaryotic model systems. Int J Biol Macromol. 2019;127:85–94.

    CAS  Google Scholar 

  22. Inoue S, Takata T, Nakazawa Y, Nakamura Y, Guo X, Yamada S, Ishigaki Y, Takeuchi M, Miyazawa K. Potential of an interorgan network mediated by toxic advanced glycation end-products in a rat model. Nutrients. 2020;13:80.

    Google Scholar 

  23. Tessier FJ. The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathol Biol (Paris). 2010;58:214–9.

    CAS  Google Scholar 

  24. Henning C, Glomb MA. Pathways of the Maillard reaction under physiological conditions. Glycoconj J. 2016;33:499–512.

    CAS  Google Scholar 

  25. Anguizola J, Matsuda R, Barnaby OS, Hoy KS, Wa C, DeBolt E, Koke M, Hage DS. Review: glycation of human serum albumin. Clin Chim Acta. 2013;425:64–76.

    CAS  Google Scholar 

  26. Heyns K, Beilfuß W. Ketosylamine rearrangement of D-threo-pentulose (D-xylulose) with alpha-amino acids. Chem Ber. 1970;103:2873–6.

    CAS  Google Scholar 

  27. Thornalley PJ. Dicarbonyl intermediates in the Maillard reaction. Ann N Y Acad Sci. 2005;1043:111–7.

    CAS  Google Scholar 

  28. Hamada Y, Araki N, Koh N, Nakamura J, Horiuchi S, Hotta N. Rapid formation of advanced glycation end products by intermediate metabolites of glycolytic pathway and polyol pathway. Biochem Biophys Res Commun. 1996;228:539–43.

    CAS  Google Scholar 

  29. Gkogkolou P, Böhm M. Advanced glycation end products: key players in skin aging? Dermatoendocrinol. 2012;4(3):259–70. https://doi.org/10.4161/DERM.22028.

    Article  CAS  Google Scholar 

  30. Méndez JD, Xie J, Aguilar-Hernández M, Méndez-Valenzuela V. Trends in advanced glycation end products research in diabetes mellitus and its complications. Mol Cell Biochem. 2010;341:33–41.

    Google Scholar 

  31. Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BS, Uribarri J, Vlassara H. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004;104:1287–91.

    CAS  Google Scholar 

  32. Sell DR, Nagaraj RH, Grandhee SK, Odetti P, Lapolla A, Fogarty J, Monnier VM. Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia. Diabetes Metab Rev. 1991;7:239–51.

    CAS  Google Scholar 

  33. Xue M, Rabbani N, Momiji H, et al. Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochem J. 2012;443:213–22.

    CAS  Google Scholar 

  34. Liang Z, Chen X, Li L, Li B, Yang Z. The fate of dietary advanced glycation end products in the body: from oral intake to excretion. Crit Rev Food Sci Nutr. 2020;60(20):3475–91. https://doi.org/10.1080/10408398.2019.1693958.

    Article  CAS  Google Scholar 

  35. Garay-Sevilla ME, Beeri MS, de La Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev. 2020;33:298–311.

    CAS  Google Scholar 

  36. Zhao D, Sheng B, Wu Y, Li H, Xu D, Nian Y, Mao S, Li C, Xu X, Zhou G. Comparison of free and bound advanced glycation end products in food: a review on the possible influence on human health. J Agric Food Chem. 2019;67:14007–18.

    CAS  Google Scholar 

  37. Chen Y, Guo TL. Dietary advanced glycation end-products elicit toxicological effects by disrupting gut microbiome and immune homeostasis. J Immunotoxicol. 2021;18:93–104.

    CAS  Google Scholar 

  38. Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A. 1997;94:6474–9.

    CAS  Google Scholar 

  39. Grimm S, Ernst L, Grötzinger N, Höhn A, Breusing N, Reinheckel T, Grune T. Cathepsin D is one of the major enzymes involved in intracellular degradation of AGE-modified proteins. Free Radic Res. 2010;44:1013–26.

    CAS  Google Scholar 

  40. Bansode SB, Chougale AD, Joshi RS, Giri AP, Bodhankar SL, Harsulkar AM, Kulkarni MJ. Proteomic analysis of protease resistant proteins in the diabetic rat kidney. Mol Cell Proteomics. 2013;12:228.

    Google Scholar 

  41. He C, Sabol J, Mitsuhashi T, Vlassara H. Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes. 1999;48:1308–15.

    CAS  Google Scholar 

  42. Delgado-Andrade C, Tessier FÉJ, Niquet-Leridon C, Seiquer I, Navarro MP. Study of the urinary and faecal excretion of Nε-carboxymethyllysine in young human volunteers. Amino Acids. 2012;43:595–602.

    CAS  Google Scholar 

  43. Kumar Pasupulati A, Chitra PS, Reddy GB. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy. Biomol Concepts. 2016;7:293–9.

    CAS  Google Scholar 

  44. Politz O, Gratchev A, McCourt PAG, et al. Stabilin-1 and -2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochem J. 2002;362:155–64.

    CAS  Google Scholar 

  45. Chen M, Nagase M, Fujita T, Narumiya S, Masaki T, Sawamura T. Diabetes enhances lectin-like oxidized LDL receptor-1 (LOX-1) expression in the vascular endothelium: possible role of LOX-1 ligand and AGE. Biochem Biophys Res Commun. 2001;287:962–8.

    CAS  Google Scholar 

  46. Zhuang A, Forbes JM. Diabetic kidney disease: a role for advanced glycation end-product receptor 1 (AGE-R1)? Glycoconj J. 2016;33:645–52.

    CAS  Google Scholar 

  47. Fukushi JI, Makagiansar IT, Stallcup WB. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell. 2004;15:3580–90.

    CAS  Google Scholar 

  48. Vlassara H. The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev. 2001;17:436–43.

    CAS  Google Scholar 

  49. Cai W, Torreggiani M, Zhu L, Chen X, He JC, Striker GE, Vlassara H. AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-delta: implications for vascular disease. Am J Physiol Cell Physiol. 2010;298(3):C624–34. https://doi.org/10.1152/AJPCELL.00463.2009.

    Article  CAS  Google Scholar 

  50. Vlassara H, Cai W, Goodman S, et al. Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: role of the antiinflammatory AGE receptor-1. J Clin Endocrinol Metab. 2009;94:4483–91.

    CAS  Google Scholar 

  51. Cai W, He JC, Zhu L, Chen X, Striker GE, Vlassara H. AGE-receptor-1 counteracts cellular oxidant stress induced by AGEs via negative regulation of p66shc-dependent FKHRL1 phosphorylation. Am J Physiol Cell Physiol. 2008;294(1):C145–52. https://doi.org/10.1152/AJPCELL.00350.2007.

    Article  CAS  Google Scholar 

  52. Overexpression of AGE-Receptor-1 in Mice Protects against Diabetic Nephropathy | American Diabetes Association. https://professional.diabetes.org/abstract/overexpression-age-receptor-1-mice-protects-against-diabetic-nephropathy. Accessed 7 Feb 2023.

  53. Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411–29.

    CAS  Google Scholar 

  54. Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33:861–8.

    CAS  Google Scholar 

  55. Jules J, Maiguel D, Hudson BI. Alternative splicing of the RAGE cytoplasmic domain regulates cell signaling and function. PLoS One. 2013;8:1. https://doi.org/10.1371/JOURNAL.PONE.0078267.

    Article  Google Scholar 

  56. Brett J, Schmidt AM, Du Yan S, et al. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol. 1993;143:1699.

    CAS  Google Scholar 

  57. Niu W, Qi Y, Wu Z, Liu Y, Zhu D, Jin W. A meta-analysis of receptor for advanced glycation end products gene: four well-evaluated polymorphisms with diabetes mellitus. Mol Cell Endocrinol. 2012;358:9–17.

    CAS  Google Scholar 

  58. Yonekura H, Yamamoto Y, Sakurai S, et al. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J. 2003;370:1097–109.

    CAS  Google Scholar 

  59. Yan SF, Ramasamy R, Naka Y, Schmidt AM. Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res. 2003;93:1159–69.

    CAS  Google Scholar 

  60. Sergi D, Boulestin H, Campbell FM, Williams LM. The role of dietary advanced glycation end products in metabolic dysfunction. Mol Nutr Food Res. 2021;65(1):e1900934. https://doi.org/10.1002/MNFR.201900934.

    Article  Google Scholar 

  61. Leung SS, Forbes JM, Borg DJ. Receptor for advanced glycation end products (RAGE) in type 1 diabetes pathogenesis. Curr Diab Rep. 2016;16(10):100. https://doi.org/10.1007/S11892-016-0782-Y.

    Article  Google Scholar 

  62. Indyk D, Bronowicka-Szydełko A, Gamian A, Kuzan A. Advanced glycation end products and their receptors in serum of patients with type 2 diabetes. Sci Rep. 2021;11:13264.

    CAS  Google Scholar 

  63. Vlassara H, Striker GE. AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol. 2011;7:526.

    CAS  Google Scholar 

  64. Zhao Z, Zhao C, Xu HZ, Zheng F, Cai W, Vlassara H, Ma ZA. Advanced glycation end products inhibit glucose-stimulated insulin secretion through nitric oxide-dependent inhibition of cytochrome c oxidase and adenosine triphosphate synthesis. Endocrinology. 2009;150:2569–76.

    CAS  Google Scholar 

  65. Böni-Schnetzler M, Thorne J, Parnaud G, Marselli L, Ehses JA, Kerr-Conte J, Pattou F, Halban PA, Weir GC, Donath MY. Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation. J Clin Endocrinol Metab. 2008;93:4065–74.

    Google Scholar 

  66. Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Curr Diab Rep. 2014;14(1):453. https://doi.org/10.1007/S11892-013-0453-1.

    Article  Google Scholar 

  67. Uribarri J, Cai W, Ramdas M, Goodman S, Pyzik R, Xue C, Li Z, Striker GE, Vlassara H. Restriction of advanced glycation end products improves insulin resistance in human type 2 Diabetes: Potential role of AGER1 and SIRT1. Diabetes Care. 2011;34:1610–6.

    CAS  Google Scholar 

  68. Šebeková K, Saavedra G, Zumpe C, Somoza V, Klenovicsová K, Birlouez-Aragon I. Plasma concentration and urinary excretion of Nɛ-(carboxymethyl)lysine in breast milk– and formula-fed infants. Ann N Y Acad Sci. 2008;1126:177–80.

    Google Scholar 

  69. Wentworth JM, Fourlanos S, Harrison LC. Reappraising the stereotypes of diabetes in the modern diabetogenic environment. Nat Rev Endocrinol. 2009;5:483–9.

    CAS  Google Scholar 

  70. Coughlan MT, Yap FYT, Tong DCK, et al. Advanced glycation end products are direct modulators of β-cell function. Diabetes. 2011;60:2523–32.

    CAS  Google Scholar 

  71. Liang F, Kume S, Koya D. SIRT1 and insulin resistance. Nat Rev Endocrinol. 2009;5:367–73.

    CAS  Google Scholar 

  72. Shu T, Zhu Y, Wang H, Lin Y, Ma Z, Han X. AGEs decrease insulin synthesis in pancreatic β-cell by repressing Pdx-1 protein expression at the post-translational level. PLoS One. 2011;6(4):e18782. https://doi.org/10.1371/JOURNAL.PONE.0018782.

    Article  CAS  Google Scholar 

  73. le Bagge S, Fotheringham AK, Leung SS, Forbes JM. Targeting the receptor for advanced glycation end products (RAGE) in type 1 diabetes. Med Res Rev. 2020;40:1200–19.

    Google Scholar 

  74. Lim M, Park L, Shin G, Hong H, Kang I, Park Y. Induction of apoptosis of Beta cells of the pancreas by advanced glycation end-products, important mediators of chronic complications of diabetes mellitus. Ann N Y Acad Sci. 2008;1150:311–5.

    CAS  Google Scholar 

  75. Kong X, Lu AL, Yao XM, Hua Q, Li XY, Qin L, Zhang HM, Meng GX, Su Q. Activation of NLRP3 inflammasome by advanced glycation end products promotes pancreatic islet damage. Oxidative Med Cell Longev. 2017;2017:9692546. https://doi.org/10.1155/2017/9692546.

    Article  CAS  Google Scholar 

  76. Borg DJ, Yap FYT, Keshvari S, et al. Perinatal exposure to high dietary advanced glycation end products in transgenic NOD8.3 mice leads to pancreatic beta cell dysfunction. Islets. 2018;10:10.

    CAS  Google Scholar 

  77. Raleigh D, Zhang X, Hastoy B, Clark A. The β-cell assassin: IAPP cytotoxicity. J Mol Endocrinol. 2017;59:R121–40.

    CAS  Google Scholar 

  78. Abedini A, Cao P, Plesner A, et al. RAGE binds preamyloid IAPP intermediates and mediates pancreatic β cell proteotoxicity. J Clin Invest. 2018;128:682–98.

    Google Scholar 

  79. Nandipati KC, Subramanian S, Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem. 2017;426:27–45.

    CAS  Google Scholar 

  80. Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomol Ther. 2015;5:194.

    CAS  Google Scholar 

  81. Zhang L, Chen Z, Wang Y, Tweardy DJ, Mitch WE. Stat3 activation induces insulin resistance via a muscle-specific E3 ubiquitin ligase Fbxo40. Am J Physiol Endocrinol Metab. 2020;318:E625–35.

    CAS  Google Scholar 

  82. Puddu A, Viviani LG. Advanced glycation endproducts and diabetes. Beyond vascular complications. Endocr Metab Immune Disord Drug Targets. 2011;11:132–40.

    CAS  Google Scholar 

  83. Passarelli M, Machado UF. AGEs-induced and endoplasmic reticulum stress/inflammation-mediated regulation of GLUT4 expression and atherogenesis in diabetes mellitus. Cells. 2021;11(1):104. https://doi.org/10.3390/CELLS11010104.

    Article  Google Scholar 

  84. Pinto-Junior DC, Silva KS, Michalani ML, et al. Advanced glycation end products-induced insulin resistance involves repression of skeletal muscle GLUT4 expression. Sci Rep. 2018;8:8109. https://doi.org/10.1038/S41598-018-26482-6.

    Article  Google Scholar 

  85. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46.

    CAS  Google Scholar 

  86. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114:597–605.

    CAS  Google Scholar 

  87. Hunter SJ, Boyd AC, O’Harte FPM, et al. Demonstration of glycated insulin in human diabetic plasma and decreased biological activity assessed by euglycemic-hyperinsulinemic clamp technique in humans. Diabetes. 2003;52:492–8.

    CAS  Google Scholar 

  88. Guo Q, Mori T, Jiang Y, et al. Methylglyoxal contributes to the development of insulin resistance and salt sensitivity in Sprague-Dawley rats. J Hypertens. 2009;27:1664–71.

    CAS  Google Scholar 

  89. Unoki-Kubota H, Yamagishi S, Takeuchi M, Bujo H, Saito Y. Pyridoxamine, an inhibitor of advanced glycation end product (AGE) formation ameliorates insulin resistance in obese, type 2 diabetic mice. Protein Pept Lett. 2010;17:1177–81.

    CAS  Google Scholar 

  90. Herman WH, Zimmet P. Type 2 diabetes: An epidemic requiring global attention and urgent action. Diabetes Care. 2012;35:943.

    Google Scholar 

  91. Groener JB, Oikonomou D, Cheko R, et al. Methylglyoxal and advanced glycation end products in patients with diabetes - what we know so far and the missing links. Exp Clin Endocrinol Diabetes. 2019;127:497–504.

    CAS  Google Scholar 

  92. Adams JN, Martelle SE, Raffield LM, et al. Analysis of advanced glycation end products in the DHS mind study. J Diabetes Complicat. 2016;30:262–8.

    Google Scholar 

  93. Ceriello A. The emerging challenge in diabetes: the “metabolic memory”. Vasc Pharmacol. 2012;57:133–8.

    CAS  Google Scholar 

  94. Ceriello A, Ihnat MA, Thorpe JE. Clinical review 2: the “metabolic memory”: is more than just tight glucose control necessary to prevent diabetic complications? J Clin Endocrinol Metab. 2009;94:410–5.

    CAS  Google Scholar 

  95. Zhang L, Chen B, Tang L. Metabolic memory: mechanisms and implications for diabetic retinopathy. Diabetes Res Clin Pract. 2012;96:286–93.

    CAS  Google Scholar 

  96. Zhang EL, Wu YJ. Metabolic memory: mechanisms and implications for diabetic vasculopathies. Sci China Life Sci. 2014;57:845–51.

    CAS  Google Scholar 

  97. Berezin A. Metabolic memory phenomenon in diabetes mellitus: achieving and perspectives. Diabetes Metab Syndr. 2016;10:S176–83.

    Google Scholar 

  98. Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. 2015;58:443–55.

    CAS  Google Scholar 

  99. Cai W, Ramdas M, Zhu L, Chen X, Striker GE, Vlassara H. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci U S A. 2012;109:15888–93.

    CAS  Google Scholar 

  100. Lotan R, Ganmore I, Livny A, et al. Effect of advanced glycation end products on cognition in older adults with type 2 diabetes: results from a pilot clinical trial. J Alzheimers Dis. 2021;82:1785–95.

    CAS  Google Scholar 

  101. Papachristou S, Pafili K, Trypsianis G, Papazoglou D, Vadikolias K, Papanas N. Skin advanced glycation end products among subjects with type 2 diabetes mellitus with or without distal sensorimotor polyneuropathy. J Diabetes Res. 2021;2021:6045677. https://doi.org/10.1155/2021/6045677.

    Article  Google Scholar 

  102. Yamamoto M, Sugimoto T. Advanced glycation end products, diabetes, and bone strength. Curr Osteoporos Rep. 2016;14:320–6.

    Google Scholar 

  103. Karimi J, Goodarzi MT, Tavilani H, Khodadadi I, Amiri I. Relationship between advanced glycation end products and increased lipid peroxidation in semen of diabetic men. Diabetes Res Clin Pract. 2011;91:61–6.

    CAS  Google Scholar 

  104. Neves D. Advanced glycation end-products: a common pathway in diabetes and age-related erectile dysfunction. Free Radic Res. 2013;47(Suppl 1):49–69.

    CAS  Google Scholar 

  105. Patel R, Baker SS, Liu W, et al. Effect of dietary advanced glycation end products on mouse liver. PLoS One. 2012;7:e35143.

    CAS  Google Scholar 

  106. Merhi Z. Advanced glycation end products and their relevance in female reproduction. Hum Reprod. 2014;29:135–45.

    CAS  Google Scholar 

  107. Gurav A. Advanced glycation end products: a link between periodontitis and diabetes mellitus? Curr Diabetes Rev. 2013;9:355–61.

    CAS  Google Scholar 

  108. Hu H, Jiang H, Ren H, Hu X, Wang X, Han C. AGEs and chronic subclinical inflammation in diabetes: disorders of immune system. Diabetes Metab Res Rev. 2015;31:127–37.

    Google Scholar 

  109. Rojas A, Añazco C, González I, Araya P. Extracellular matrix glycation and receptor for advanced glycation end-products activation: a missing piece in the puzzle of the association between diabetes and cancer. Carcinogenesis. 2018;39:515–21.

    CAS  Google Scholar 

  110. Ahmad MN, Farah AI, Al-Qirim TM. The cardiovascular complications of diabetes: a striking link through protein glycation. Rom J Intern Med. 2020;58:188–98.

    Google Scholar 

  111. Lee J, Yun JS, Ko SH. Advanced glycation end products and their effect on vascular complications in type 2 diabetes mellitus. Nutrients. 2022;14(15):3086. https://doi.org/10.3390/NU14153086.

    Article  CAS  Google Scholar 

  112. Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, Farb A, Virmani R. Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol. 2004;24:1266–71.

    CAS  Google Scholar 

  113. Lin L, Park S, Lakatta EG. RAGE signaling in inflammation and arterial aging. Front Biosci. 2009;14:1403.

    CAS  Google Scholar 

  114. Jansen F, Yang X, Franklin BS, Hoelscher M, Schmitz T, Bedorf J, Nickenig G, Werner N. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res. 2013;98:94–106.

    CAS  Google Scholar 

  115. Sun L, Ishida T, Yasuda T, Kojima Y, Honjo T, Yamamoto Y, Yamamoto H, Ishibashi S, Hirata KI, Hayashi Y. RAGE mediates oxidized LDL-induced pro-inflammatory effects and atherosclerosis in non-diabetic LDL receptor-deficient mice. Cardiovasc Res. 2009;82:371–81.

    CAS  Google Scholar 

  116. Rabbani N, Godfrey L, Xue M, Shaheen F, Geoffrion M, Milne R, Thornalley PJ. Glycation of LDL by methylglyoxal increases arterial atherogenicity: a possible contributor to increased risk of cardiovascular disease in diabetes. Diabetes. 2011;60:1973–80.

    CAS  Google Scholar 

  117. Fukami K, Yamagishi S, Okuda S. Role of AGEs-RAGE system in cardiovascular disease. Curr Pharm Des. 2014;20:2395–402.

    CAS  Google Scholar 

  118. Vlassara H, Fuh H, Donnelly T, Cybulsky M. Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol Med. 1995;1:447.

    CAS  Google Scholar 

  119. Yamagishi S, Fujimori H, Yonekura H, Yamamoto Y, Yamamoto H. Advanced glycation endproducts inhibit prostacyclin production and induce plasminogen activator inhibitor-1 in human microvascular endothelial cells. Diabetologia. 1998;41:1435–41.

    CAS  Google Scholar 

  120. Quehenberger P, Bierhaus A, Fasching P, et al. Endothelin 1 transcription is controlled by nuclear factor-kappaB in AGE-stimulated cultured endothelial cells. Diabetes. 2000;49:1561–70.

    CAS  Google Scholar 

  121. Xu B, Chibber R, Ruggiero D, Kohner E, Ritter J, Ferro A. Impairment of vascular endothelial nitric oxide synthase activity by advanced glycation end products. FASEB J. 2003;17:1289–91.

    CAS  Google Scholar 

  122. Kosmopoulos M, Drekolias D, Zavras PD, Piperi C, Papavassiliou AG. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochim Biophys Acta Mol basis Dis. 2019;1865:611–9.

    CAS  Google Scholar 

  123. McNulty M, Mahmud A, Feely J. Advanced glycation end-products and arterial stiffness in hypertension. Am J Hypertens. 2007;20:242–7.

    CAS  Google Scholar 

  124. Brodeur MR, Bouvet C, Bouchard S, Moreau S, Leblond J, DeBlois D, Moreau P. Reduction of advanced-glycation end products levels and inhibition of RAGE signaling decreases rat vascular calcification induced by diabetes. PLoS One. 2014;9:e85922.

    Google Scholar 

  125. Prasad A, Bekker P, Tsimikas S. Advanced glycation end products and diabetic cardiovascular disease. Cardiol Rev. 2012;20:177–83.

    Google Scholar 

  126. Hansen LM, Gupta D, Joseph G, Weiss D, Taylor WR. The receptor for advanced glycation end products impairs collateral formation in both diabetic and non-diabetic mice. Lab Investig. 2017;97:34–42.

    CAS  Google Scholar 

  127. Peppa M, Brem H, Ehrlich P, Zhang JG, Cai W, Li Z, Croitoru A, Thung S, Vlassara H. Adverse effects of dietary glycotoxins on wound healing in genetically diabetic mice. Diabetes. 2003;52:2805–13.

    CAS  Google Scholar 

  128. Münch G, Westcott B, Menini T, Gugliucci A. Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids. 2012;42:1221–36.

    Google Scholar 

  129. Thornalley PJ. Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int Rev Neurobiol. 2002;50:37–57.

    CAS  Google Scholar 

  130. Jack M, Wright D. Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Transl Res. 2012;159:355–65.

    CAS  Google Scholar 

  131. Zong H, Ward M, Stitt AW. AGEs, RAGE, and diabetic retinopathy. Curr Diab Rep. 2011;11:244–52.

    Google Scholar 

  132. Liu BF, Bhat M, Padival AK, Smith DG, Nagaraj RH. Effect of dicarbonyl modification of fibronectin on retinal capillary pericytes. Invest Ophthalmol Vis Sci. 2004;45:1983–95.

    Google Scholar 

  133. Gao X, Zhang H, Schmidt AM, Zhang C. AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2 diabetic mice. Am J Physiol Heart Circ Physiol. 2008;295(2):H491–8. https://doi.org/10.1152/AJPHEART.00464.2008.

    Article  CAS  Google Scholar 

  134. Shang L, Ananthakrishnan R, Li Q, et al. RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3beta signaling pathways. PLoS One. 2010;5(4):e10092. https://doi.org/10.1371/JOURNAL.PONE.0010092.

    Article  Google Scholar 

  135. Ishibashi T, Kawaguchi M, Sugimoto K, Uekita H, Sakamoto N, Yokoyama K, Maruyama Y, Takeishi Y. Advanced glycation end product-mediated matrix metallo-proteinase-9 and apoptosis via renin-angiotensin system in type 2 diabetes. J Atheroscler Thromb. 2010;17:578–89.

    CAS  Google Scholar 

  136. Ramasamy R, Yan SF, Schmidt AM. The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes. Vasc Pharmacol. 2012;57:160–7.

    CAS  Google Scholar 

  137. Kilhovd BK, Juutilainen A, Lehto S, Rönnemaa T, Torjesen PA, Hanssen KF, Laakso M. Increased serum levels of advanced glycation endproducts predict total, cardiovascular and coronary mortality in women with type 2 diabetes: a population-based 18 year follow-up study. Diabetologia. 2007;50:1409–17.

    CAS  Google Scholar 

  138. Kiuchi K, Nejima J, Takano T, Ohta M, Hashimoto H, Baxter GF. Increased serum concentrations of advanced glycation end products: a marker of coronary artery disease activity in type 2 diabetic patients. Heart. 2001;85:87–91.

    CAS  Google Scholar 

  139. Bidasee KR, Nallani K, Yu Y, Cocklin RR, Zhang Y, Wang M, Dincer UD, Besch HR. Chronic diabetes increases advanced glycation end products on cardiac ryanodine receptors/calcium-release channels. Diabetes. 2003;52:1825–36.

    CAS  Google Scholar 

  140. Bidasee KR, Zhang Y, Shao CH, Wang M, Patel KP, Dincer ÜD, Besch HR. Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+-ATPase. Diabetes. 2004;53:463–73.

    CAS  Google Scholar 

  141. Candido R, Forbes JM, Thomas MC, et al. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res. 2003;92:785–92.

    CAS  Google Scholar 

  142. Xie J, Méndez JD, Méndez-Valenzuela V, Aguilar-Hernández MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal. 2013;25:2185–97.

    CAS  Google Scholar 

  143. Yamazaki KG, Gonzalez E, Zambon AC. Crosstalk between the renin-angiotensin system and the advance glycation end product axis in the heart: role of the cardiac fibroblast. J Cardiovasc Transl Res. 2012;5:805–13.

    Google Scholar 

  144. Nielsen JM, Kristiansen SB, Nørregaard R, Andersen CL, Denner L, Nielsen TT, Flyvbjerg A, Bøtker HE. Blockage of receptor for advanced glycation end products prevents development of cardiac dysfunction in db/db type 2 diabetic mice. Eur J Heart Fail. 2009;11:638–47.

    CAS  Google Scholar 

  145. Persson F. Rossing P (2018) diagnosis of diabetic kidney disease: state of the art and future perspective. Kidney Int Suppl. 2011;8:2–7.

    Google Scholar 

  146. Wu XQ, Zhang DD, Wang YN, Tan YQ, Yu XY, Zhao YY. AGE/RAGE in diabetic kidney disease and ageing kidney. Free Radic Biol Med. 2021;171:260–71.

    CAS  Google Scholar 

  147. Jin Q, Lau ES, Luk AO, et al. Skin autofluorescence is associated with progression of kidney disease in type 2 diabetes: a prospective cohort study from the Hong Kong diabetes biobank. Nutr Metab Cardiovasc Dis. 2022;32:436–46.

    CAS  Google Scholar 

  148. Koska J, Gerstein HC, Beisswenger PJ, Reaven PD. Advanced glycation end products predict loss of renal function and high-risk chronic kidney disease in type 2 diabetes. Diabetes Care. 2022;45:684–91.

    CAS  Google Scholar 

  149. Tanji N, Markowitz GS, Fu C, Kislinger T, Taguchi A, Pischetsrieder M, Stern D, Schmidt AM, D’Agati VD. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J Am Soc Nephrol. 2000;11:1656–66.

    CAS  Google Scholar 

  150. Yamagishi SI, Inagaki Y, Okamoto T, Amano S, Koga K, Takeuchi M. Advanced glycation end products inhibit de novo protein synthesis and induce TGF-beta overexpression in proximal tubular cells. Kidney Int. 2003;63:464–73.

    CAS  Google Scholar 

  151. Sanajou D, Ghorbani Haghjo A, Argani H, Aslani S. AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions. Eur J Pharmacol. 2018;833:158–64.

    CAS  Google Scholar 

  152. Bin SS, Ha DS, Min SY, Ha TS. Autophagy precedes apoptosis in angiotensin II-induced podocyte injury. Cell Physiol Biochem. 2019;53:747–59.

    Google Scholar 

  153. Yeh WJ, Yang HY, Pai MH, Wu CH, Chen JR. Long-term administration of advanced glycation end-product stimulates the activation of NLRP3 inflammasome and sparking the development of renal injury. J Nutr Biochem. 2017;39:68–76.

    CAS  Google Scholar 

  154. Tan ALY, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol. 2007;27:130–43.

    CAS  Google Scholar 

  155. Yamagishi SI, Inagaki Y, Okamoto T, Amano S, Koga K, Takeuchi M, Makita Z. Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells. J Biol Chem. 2002;277:20309–15.

    CAS  Google Scholar 

  156. Anil Kumar P, Welsh GI, Saleem MA, Menon RK. Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol (Lausanne). 2014;5:151. https://doi.org/10.3389/FENDO.2014.00151.

    Article  CAS  Google Scholar 

  157. An X, Zhang L, Yao Q, Li L, Wang B, Zhang J, He M, Zhang J. The receptor for advanced glycation endproducts mediates podocyte heparanase expression through NF-κB signaling pathway. Mol Cell Endocrinol. 2018;470:14–25.

    CAS  Google Scholar 

  158. Rabbani N, Thornalley PJ. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 2018;93:803–13.

    CAS  Google Scholar 

  159. Vlassara H, Striker LJ, Teichberg S, Fuh H, Li YM, Steffes M. Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci. 1994;91:11704–8.

    CAS  Google Scholar 

  160. Coughlan MT, Patel SK, Jerums G, et al. Advanced glycation urinary protein-bound biomarkers and severity of diabetic nephropathy in man. Am J Nephrol. 2011;34:347–55.

    CAS  Google Scholar 

  161. Waris S, Winklhofer-Roob BM, Roob JM, Fuchs S, Sourij H, Rabbani N, Thornalley PJ. Increased DNA dicarbonyl glycation and oxidation markers in patients with type 2 diabetes and link to diabetic nephropathy. J Diabetes Res. 2015;2015:915486. https://doi.org/10.1155/2015/915486.

    Article  Google Scholar 

  162. Zheng F, He C, Cai W, Hattori M, Steffes M, Vlassara H. Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes Metab Res Rev. 2002;18:224–37.

    Google Scholar 

  163. Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, Peppa M, Rayfield EJ. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A. 2002;99:15596–601.

    CAS  Google Scholar 

  164. Cai W, He JC, Zhu L, Chen X, Wallenstein S, Striker GE, Vlassara H. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol. 2007;170:1893–902.

    CAS  Google Scholar 

  165. Gutierrez-Mariscal FM, Cardelo MP, de la Cruz S, et al. Reduction in circulating advanced glycation end products by Mediterranean diet is associated with increased likelihood of type 2 diabetes remission in patients with coronary heart disease: from the CORDIOPREV study. Mol Nutr Food Res. 2021;65(1):e1901290. https://doi.org/10.1002/MNFR.201901290.

    Article  Google Scholar 

  166. Steenbeke M, de Decker I, Marchand S, Glorieux G, van Biesen W, Lapauw B, Delanghe JR, Speeckaert MM. Dietary advanced glycation end products in an elderly population with diabetic nephropathy: an exploratory investigation. Nutrients. 2022;14:1818. https://doi.org/10.3390/NU14091818.

    Article  CAS  Google Scholar 

  167. Chilelli NC, Cremasco D, Cosma C, Ragazzi E, Francini Pesenti F, Bonfante L, Lapolla A. Effectiveness of a diet with low advanced glycation end products, in improving glycoxidation and lipid peroxidation: a long-term investigation in patients with chronic renal failure. Endocrine. 2016;54:552–5.

    CAS  Google Scholar 

  168. Oliveira JS, de Almeida C, de Souza ÂMN, da Cruz LD, Alfenas RCG. Effect of dietary advanced glycation end-products restriction on type 2 diabetes mellitus control: a systematic review. Nutr Rev. 2022;80:294–305.

    Google Scholar 

  169. Rowan S, Bejarano E, Taylor A. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochim Biophys Acta Mol basis Dis. 2018;1864:3631–43.

    CAS  Google Scholar 

  170. Thornalley PJ. The enzymatic defence against glycation in health, disease and therapeutics: a symposium to examine the concept. Biochem Soc Trans. 2003;31:1341–2.

    CAS  Google Scholar 

  171. Xue M, Weickert MO, Qureshi S, et al. Improved glycemic control and vascular function in overweight and obese subjects by glyoxalase 1 inducer formulation. Diabetes. 2016;65:2282–94.

    CAS  Google Scholar 

  172. Maher P, Dargusch R, Ehren JL, Okada S, Sharma K, Schubert D. Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS One. 2011;6(6):e21226. https://doi.org/10.1371/JOURNAL.PONE.0021226.

    Article  CAS  Google Scholar 

  173. Suantawee T, Thilavech T, Cheng H, Adisakwattana S. Cyanidin attenuates methylglyoxal-induced oxidative stress and apoptosis in INS-1 pancreatic β-cells by increasing glyoxalase-1 activity. Nutrients. 2020;12(5):1319. https://doi.org/10.3390/NU12051319.

    Article  CAS  Google Scholar 

  174. Sanajou D, Ghorbani Haghjo A, Argani H, Roshangar L, Ahmad SNS, Jigheh ZA, Aslani S, Panah F, Rashedi J, Mesgari Abbasi M. FPS-ZM1 and valsartan combination protects better against glomerular filtration barrier damage in streptozotocin-induced diabetic rats. J Physiol Biochem. 2018;74:467–78.

    CAS  Google Scholar 

  175. Bucciarelli LG, Wendt T, Qu W, et al. RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation. 2002;106:2827–35.

    CAS  Google Scholar 

  176. Johnson LL, Johnson J, Ober R, Holland A, Zhang G, Backer M, Backer J, Ali Z, Tekabe Y. Novel receptor for advanced glycation end products-blocking antibody to treat diabetic peripheral artery disease. J Am Heart Assoc. 2021;10:1–12.

    Google Scholar 

  177. Puddu A, MacH F, Nencioni A, Viviani GL, Montecucco F. An emerging role of glucagon-like peptide-1 in preventing advanced-glycation-end-product-mediated damages in diabetes. Mediat Inflamm. 2013;2013:591056. https://doi.org/10.1155/2013/591056.

    Article  CAS  Google Scholar 

  178. Kaida Y, Fukami K, Matsui T, et al. DNA aptamer raised against AGEs blocks the progression of experimental diabetic nephropathy. Diabetes. 2013;62:3241–50.

    CAS  Google Scholar 

  179. Vlassara H, Uribarri J, Cai W, Goodman S, Pyzik R, Post J, Grosjean F, Woodward M, Striker GE. Effects of sevelamer on HbA1c, inflammation, and advanced glycation end products in diabetic kidney disease. Clin J Am Soc Nephrol. 2012;7:934–42.

    CAS  Google Scholar 

  180. Urios P, Grigorova-Borsos AM, Sternberg M. Aspirin inhibits the formation of pentosidine, a cross-linking advanced glycation end product, in collagen. Diabetes Res Clin Pract. 2007;77:337–40.

    CAS  Google Scholar 

  181. Adeshara KA, Bangar NS, Doshi PR, Diwan A, Tupe RS. Action of metformin therapy against advanced glycation, oxidative stress and inflammation in type 2 diabetes patients: 3 months follow-up study. Diabetes Metab Syndr Clin Res Rev. 2020;14:1449–58.

    Google Scholar 

  182. Chang KC, Tseng CD, Wu MS, Liang JT, Tsai MS, Cho YL, Tseng YZ. Aminoguanidine prevents arterial stiffening in a new rat model of type 2 diabetes. Eur J Clin Investig. 2006;36:528–35.

    CAS  Google Scholar 

  183. Tajiri Y, Grill V. Aminoguanidine exerts a beta-cell function-preserving effect in high glucose-cultured beta-cells (INS-1). Int J Exp Diabetes Res. 2000;1:111–9.

    CAS  Google Scholar 

  184. Fishman SL, Sonmez H, Basman C, Singh V, Poretsky L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med. 2018;24(1):59. https://doi.org/10.1186/S10020-018-0060-3.

    Article  Google Scholar 

  185. Alkhalaf A, Klooster A, van Oeveren W, et al. A double-blind, randomized, placebo-controlled clinical trial on benfotiamine treatment in patients with diabetic nephropathy. Diabetes Care. 2010;33:1598–601.

    CAS  Google Scholar 

  186. Stracke H, Hammes HP, Werkmann D, et al. Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats. Exp Clin Endocrinol Diabetes. 2001;109:330–6.

    CAS  Google Scholar 

  187. Lewis EJ, Greene T, Spitalewiz S, et al. Pyridorin in type 2 diabetic nephropathy. J Am Soc Nephrol. 2012;23:131–6.

    CAS  Google Scholar 

  188. Pereira A, Fernandes R, Crisóstomo J, Seiça RM, Sena CM. The sulforaphane and pyridoxamine supplementation normalize endothelial dysfunction associated with type 2 diabetes. Scientific Rep. 2017;17:1–13.

    Google Scholar 

  189. van den Eynde MDG, Houben AJHM, Scheijen JLJM, et al. Pyridoxamine reduces methylglyoxal and markers of glycation and endothelial dysfunction, but does not improve insulin sensitivity or vascular function in abdominally obese individuals: a randomized double-blind placebo-controlled trial. Diabetes Obes Metab. 2023;25(5):1280–91. https://doi.org/10.1111/DOM.14977.

    Article  Google Scholar 

  190. Tsunosue M, Mashiko N, Ohta Y, et al. An alpha-glucosidase inhibitor, acarbose treatment decreases serum levels of glyceraldehyde-derived advanced glycation end products (AGEs) in patients with type 2 diabetes. Clin Exp Med. 2010;10:139–41.

    Google Scholar 

  191. Beyer-Mears A, Mistry K, Diecke FPJ, Cruz E. Zopolrestat prevention of proteinuria, albuminuria and cataractogenesis in diabetes mellitus. Pharmacology. 1996;52:292–302.

    CAS  Google Scholar 

  192. Nenna A, Spadaccio C, Lusini M, Ulianich L, Chello M, Nappi F. Basic and clinical research against advanced glycation end products (AGEs): new compounds to tackle cardiovascular disease and diabetic complications. Recent Adv Cardiovasc Drug Discov. 2015;10:10–33.

    CAS  Google Scholar 

  193. Coughlan MT, Forbes JM, Cooper ME. Role of the AGE crosslink breaker, alagebrium, as a renoprotective agent in diabetes. Kidney Int. 2007;72:S54–60.

    Google Scholar 

  194. Toprak C, Yigitaslan S. Alagebrium and complications of diabetes mellitus. Eurasian J Med. 2019;51:285.

    CAS  Google Scholar 

  195. Abbas G, Al-Harrasi AS, Hussain H, Hussain J, Rashid R, Choudhary MI. Antiglycation therapy: discovery of promising antiglycation agents for the management of diabetic complications. Pharm Biol. 2016;54:198–206.

    CAS  Google Scholar 

  196. Lee BH, Hsu WH, Hsu YW, Pan TM. Dimerumic acid attenuates receptor for advanced glycation endproducts signal to inhibit inflammation and diabetes mediated by Nrf2 activation and promotes methylglyoxal metabolism into d-lactic acid. Free Radic Biol Med. 2013;60:7–16.

    CAS  Google Scholar 

  197. Thieme K, da Silva KS, Fabre NT, et al. N-acetyl cysteine attenuated the deleterious effects of advanced glycation end-products on the kidney of non-diabetic rats. Cell Physiol Biochem. 2016;40:608–20.

    CAS  Google Scholar 

  198. Tao X, Zhang Z, Yang Z, Rao B. The effects of taurine supplementation on diabetes mellitus in humans: a systematic review and meta-analysis. Food Chem. 2022;4:100106.

    CAS  Google Scholar 

  199. Muellenbach EA, Diehl CJ, Teachey MK, et al. Interactions of the advanced glycation end product inhibitor pyridoxamine and the antioxidant α-lipoic acid on insulin resistance in the obese Zucker rat. Metabolism. 2008;57:1465.

    CAS  Google Scholar 

  200. Parveen A, Sultana R, Lee SM, Kim TH, Kim SY. Phytochemicals against anti-diabetic complications: targeting the advanced glycation end product signaling pathway. Arch Pharm Res. 2021;44:378–401.

    CAS  Google Scholar 

  201. Vijaykrishnaraj M, Wang K. Dietary natural products as a potential inhibitor towards advanced glycation end products and hyperglycemic complications: a phytotherapy approaches. Biomed Pharmacother. 2021;144:112336. https://doi.org/10.1016/J.BIOPHA.2021.112336.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Hadzi-Petrushev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hadzi-Petrushev, N., Angelovski, M., Mladenov, M. (2023). Advanced Glycation End Products and Diabetes. In: Avtanski, D., Poretsky, L. (eds) Obesity, Diabetes and Inflammation. Contemporary Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-031-39721-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39721-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39720-2

  • Online ISBN: 978-3-031-39721-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics