Skip to main content

The Theoretical Basis for Materials Testing

  • Chapter
  • First Online:
Testing of Materials for Fire Protection Needs

Abstract

Burning is a very complex physicochemical process of a rapid-ongoing oxidation reaction accompanied by heat release and flame. Depending on their ability to react with oxygen, materials can be divided into flammable ones and non-flammable ones. If the flammable set (flammable substance and oxygen) is of one state, i.e., the flammable mixture is formed before the reaction itself in the burning area, it is called homogeneous burning. Its characteristic feature is a flame. If the flammable set is composed of two states, i.e. a solid substance being a fuel and oxidizing agent a gas, it is called heterogeneous burning. In this case, the characteristic feature is smoldering [10, 15, 16].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Balog, Aplikácia výsledkov požiarnych testov pri hodnotení požiarneho nebezpečia materiálov (Application of the results of fire tests in the evaluation of the fire hazard of materials), in Horľavosť materiálov a nebezpečné pôsobenie splodín horenia (Combustibility of materials and dangerous effects of combustion products) (STU, Bratislava, 1987), p. 3

    Google Scholar 

  2. K. Balog, M. Kvarcak, Dynamika požáru (Fire dynamics) (SPBI, Ostrava, 1999)

    Google Scholar 

  3. K. Balog, Samovznietenie (Spontaneous ignition) (SPBI, Ostrava, 1999)

    Google Scholar 

  4. V. Blahoz, Z. Kadlec, Základy sdílení tepla (Basics of heat sharing) (SPBI, Ostrava, 2000)

    Google Scholar 

  5. P. Bowes, Self-Heating. Evaluation and Controlling Hazards. Chapter 7 (Elsevier, New York, 1984, p. 500, ISBN 044996249

    Google Scholar 

  6. R. Brdicka, J. Dvorak, Základy fysikální chemie (Basics of physical chemistry) (Academia, Praha 1977)

    Google Scholar 

  7. T. Bubeníkova et al., Characterization of macromolecular traits of lignin from heat treated spruce wood by size exclusion chromatography. Acta Fac. Xylologiae Zvolen 49(2), 33–42 (2018). https://doi.org/10.17423/afx.2018.49.2.03

    Article  Google Scholar 

  8. A. Buchanan, A. Abu, in Structural Design for Fire Safety, ed. by 2nd edition, (Wiley, West Sussex, 2017). https://doi.org/10.1002/9781118700402

    Chapter  Google Scholar 

  9. F. Castro Rego et al., Fire Science, Springer Textbooks in Earth Sciences, Geography and Environment (Springer Nature, Cham, 2021). https://doi.org/10.1007/978-3-030-69815-7_1

    Book  Google Scholar 

  10. A. Clancy, Model for predicting the probability of failure of wood framed walls and floors in real fire, in Wood & Fire Safety, (Technical University in Zvolen, Zvolen, 1996), pp. 33–42. ISBN 80-228-0493-2

    Google Scholar 

  11. F.B. Clarke, J. Ottoson, Fire death scenarios and fire safety planning. Fire J. 70(3), 20–22; 117–118 (1976), ISSN 0379-7112

    Google Scholar 

  12. D.A. Crowl, Calculating the energy of explosion using thermodynamic availability. J. Loss Prev. Process Ind. 5, 109–118 (1992). https://doi.org/10.1016/0950-4230(92)80007-U

    Article  Google Scholar 

  13. J. Damec, Protivýbuchová prevence (Anti-explosion prevention) (SPBI, Ostrava, 1998)

    Google Scholar 

  14. A.P. Grey, A simple generalized theory for the analysis of dynamic thermal measurement, in Analytical Calorimetry, ed. by R.S. Porter, J.F. Johnson, (Plenum Press, 1968), pp. 209–218. https://doi.org/10.1007/978-1-4757-0001-5_27

    Chapter  Google Scholar 

  15. J. Harangozo, E. Obst, S. Hirle, Možnosti využitia retardérov horenia (Possibilities of using flame retardants, in Zborník z XIII. medzinárodnej vedeckej konferencie, Manažérstvo životného prostredia (In Proceedings of XIIIth international scientific conference, management of the living environment) (2013). ISBN 978-80-89281-90-9

    Google Scholar 

  16. J. Harangozo et al., Assessment of wood materials modified by flame retardants at loading by Heat Flux. Environmental and safety aspects of renewable materials and energy sources, Advances Materials Research, Trans Tech Publications Ltd. Adv. Mater. Res., 272–275 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1001.272

  17. J. Hietaniemi, S. Hostikka, J. Vaari, FDS simulation of fire spread – Comparison of model results with experimental data, Technical Report VTT Working Paper 4, VTT Building and Transport, Espoo, Finland 2004, p. 54, ISBN 951-38-6556-8. https://www.vttresearch.com/sites/default/files/pdf/workingpapers/2004/W4.pdf. Accessed 17 Feb 2023

  18. N. Johansson, S. Svensson, Review of the use of fire dynamics theory in fire service activities. Fire Technol. 55, 81–103 (2018). https://doi.org/10.1007/s10694-018-0774-3

    Article  Google Scholar 

  19. F. Kacik, T. Bubenikova, D. Kacikova, Zmeny štruktúry lignínu pri termickom pôsobení na smrekové drevo (Changes in the structure of lignin during thermal treatment of spruce wood). Acta fac. xylologiae 49, 35–43 (2007). https://df.tuzvo.sk/sites/default/files/07-01-2008-kacikova-kacik.pdf. Accessed 17 Feb 2023

    Google Scholar 

  20. D. Kacikova, Vplyv nízkoteplotnej degradácie na zmeny vybraných chemických a mecha-nických charakteristík smrekového dreva (The effect of low-temperature degradation on changes in selected chemical and mechanical characteristics of spruce wood), in Wood and Fire Safety, (Technical University, Zvolen, 2004)

    Google Scholar 

  21. D. Kacikova, Zmeny vybraných charakteristík smrekového a smrekovcového dreva po zaťažení sálavým tepelným zdrojom (Changes in selected characteristics of spruce and larch wood after loading with a radiant heat source). Acta facultatis xylologiae Zvolen 49(1), 53–59 (2007) Published by Technical University in Zvolen

    Google Scholar 

  22. J. Kalousek, Základy fyzikalní chemie hoření, výbuchu a hašení (Basics of physical chemistry of burning, explosion and extinguishing) (SPBI, Ostrava, 1999)

    Google Scholar 

  23. D.S. Kellogg et al., Smolder rates of thin cellulosic materials. J. Fire Sci. (1997). https://doi.org/10.1177/073490419701500504

  24. D.S. Kellogg et al., The initiation of smoldering combustion in cellulosic fabrics. J. Fire Sci. (1998). https://doi.org/10.1177/073490419801600202

  25. M. Kosik, et al., Polymérne materiály a ich požiarna ochrana (Polymeric materials and their fire protection). (ALFA, Bratislava, 1986)

    Google Scholar 

  26. P. Kotsovinos et al., Fire dynamics inside an open-plan compartment with an exposed CLT ceiling and glulam columns: CodeRed #01. Fire Mater. https://doi.org/10.1002/fam.3049

  27. C. Lautenberg et al., Understanding materials flammability, in Flammability Testing of Materials Used in Construction, Transport and Mining, (Woodhead Publishing Limited, Cambridge, 2006), pp. 1–20. https://doi.org/10.1533/9781845691042.1

    Chapter  Google Scholar 

  28. A. Linan, F.A. Williams, Fundamental Aspects of Combustion (Oxford University Press, Oxford, 1993), p. 167

    Google Scholar 

  29. W. Li et al., Fire risk assessment of high-rise buildings under construction based on unascertained measure theory. PLoS One 15(9), e0239166 (2020). https://doi.org/10.1371/journal.pone.0239166

    Article  Google Scholar 

  30. A. Majlingova, et al., Current trends in flame–retardant treatment of selected polymers – a review. Conference paper earth in a trap? 2018 Analytical methods in fire and environmental science. Technical University in Zvolen, Slovak Republic, 2018, pp. 106–122, ISBN 978-80-228-3062-1. https://www.researchgate.net/publication/327572135_Current_trends_in_flame-retardant_treatment_of_selected_polymers_-_a_review. Accessed 17 Feb 2023

  31. L. Makovicka Osvaldova et al., The influence of density of test specimens on the quality assessment of retarding effects of fire retardants. Wood Research 61(1), 35–42 (2016). http://www.woodresearch.sk/cms/the-influence-of-density-of-test-specimens-on-the-quality-assessment-of-retarding-effects-of-fire-retardants/. Accessed 17 Feb 2023

    Google Scholar 

  32. I. Markova, Fyzikálno-chemické základy horenia a hasenia I. Návody na cvičenia (Physico-chemical basics of fire and extinguishing I. Instructions for exercises) (Technical University, Zvolen, 2001)

    Google Scholar 

  33. J. Martinka et al., Study of selected natural materials ignitability. Adv. Mater. Res. 2014(1001), 201–261 (2014). https://doi.org/10.4028/www.scientific.net/amr.1001.201

    Article  Google Scholar 

  34. J. Martinka et al., Ignition parameters of poplar wood. Acta Facultatis Xylologiae Zvolen 59(1), 85–95 (2017). https://doi.org/10.17423/afx.2017.59.1.08

    Article  Google Scholar 

  35. W.J. Moore, Fyzikální chemie (Physical chemistry) (SNTL, Praha, 1979)

    Google Scholar 

  36. K. Orlikova, P. Stroch, Chemie procesů hoření (Chemistry of combustion processes) (VSB-TU, Ostrava, 1999)

    Google Scholar 

  37. A. Osvald et al., Return to flame retardants of wood. J. Environ. Prot. Saf. Educ. Manage 3(5), 55–61 (2015) ISSN 1339-5270. https://www.sszp.eu/wp-content/uploads/2015_No-5-3_Journal-JEPSEM_p-55_Osvald-et-al_f-.pdf. Accessed 17 Feb 2023

    Google Scholar 

  38. A. Osvald, L. Makovicka Osvaldova, New methods in the evaluation of flammability properties, in Production Management and Engineering Sciences – Scientific Publication of the International Conference on Engineering Science and Production Management, ESPM 2015, vol. 2015, (CRC Press/Balkema Book, London), pp. 503–508. https://doi.org/10.1201/b19259

  39. A. Osvald, Hodnotenie požiarnej bezpečnosti materiálov a výrobkov z dreva a na báze dreva (Assessment of fire safety of wood and wood–based materials and products). (Technical University, Zvolen, 1997) (Student’s Book)

    Google Scholar 

  40. J. Quintiere, Principles of Fire Behavior, 2nd edn. (CRC Press, 2016). https://doi.org/10.1201/9781315369655

    Book  Google Scholar 

  41. P.M. Pédrot, N. Tabareau, The fire triangle: How to mix substitution, dependent elimination, and effects. Proceedings of the ACM on programming languages, 2020, pp. 1–28. https://doi.org/10.1145/3371126

  42. C. Preimesberger, A. Solt-Rindler, C.H. Hansmann, C. Pfeifer, Influence of size and temperature on the auto-ignition characteristics of solid beech and spruce wood. Fuel 337, 127140 (2023). https://doi.org/10.1016/j.fuel.2022.127140

    Article  Google Scholar 

  43. D.J. Rasbash, D.D. Drysdale, D. Deepak, Critical heat and mass transfer at pilot ignition and extinction of a material. Fire Saf. J. 10, 1–10 (1986). https://doi.org/10.1016/0379-7112(86)90026-3

    Article  Google Scholar 

  44. M. Reading, M. Luget, R. Wilson, Modulated differential scanning calorimetry. Thermochimica Acta 238, 295–307 (1994). https://doi.org/10.1016/S0040-6031(94)85215-4

    Article  Google Scholar 

  45. J. Slosiarik, Horľavosť a výbušnosť organických prachov (Combustibility and explosiveness of organic dusts). Spravodajca 4, 19–22 (2003)

    Google Scholar 

  46. M. Senovsky, Základy požární taktiky (Basics of fire tactics) Sdružení požárního a bezpečnostního inženírství (VSB–TU, Ostrava, 2001)

    Google Scholar 

  47. D. Spilak et al., Determining the charred layer of wooden beams with finite element analysis based on enthalpy approach. Buildings 12, 875 (2022). https://doi.org/10.3390/buildings12070875

    Article  Google Scholar 

  48. I. Spilda, M. Kosik, Procesy horenia a ich fyzikálno–chemické aspekty (Combustion processes and their physical and chemical aspects), in Horľavosť materiálov a nebezpečné pôsobenie splodín horenia. IV. celosvetový seminár v SŠPO Žilina. (Combustibility of materials and dangerous effects of combustion products. IV). (SŠPO Žilina, MV SSR, Žilina 1985)

    Google Scholar 

  49. J. Troitzsch, Testing plastics, textiles and other materials according to international standards for building and furniture, in ATLAS SFTS BV flammability workshop. Bratislava, Atlas, 1995

    Google Scholar 

  50. I. Turekova, Vysokoteplotná degradácia materiálov na báze dreva a stanovenie vybraných požiarnotechnických charakteristík (Alumni Press, Trnava, 2007), p. 123

    Google Scholar 

  51. I. Turekova, I. Markova, Ignition of deposited wood dust layer by selected sources. Appl. Sci. 10, 5779 (2020). https://doi.org/10.3390/app10175779

    Article  Google Scholar 

  52. I. Turekova, E. Mrackova, I. Markova, Determination of waste industrial dust safety characteristics. Int. J. Environ. Res. Public Health 16, 2103 (2019). https://doi.org/10.3390/ijerph16122103

    Article  Google Scholar 

  53. M. Zachar et al., The effect of heat flux to the fire–technical and chemical properties of spruce wood (Picea abies L.). Materials 14, 4989 (2021). https://doi.org/10.3390/ma14174989

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Makovická Osvaldová, L., Fatriasari, W. (2023). The Theoretical Basis for Materials Testing. In: Testing of Materials for Fire Protection Needs. The Society of Fire Protection Engineers Series. Springer, Cham. https://doi.org/10.1007/978-3-031-39711-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39711-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39710-3

  • Online ISBN: 978-3-031-39711-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics