Skip to main content

Sex Cord-Stromal Tumors

  • Chapter
  • First Online:
Pathology of the Ovary, Fallopian Tube and Peritoneum

Part of the book series: Essentials of Diagnostic Gynecological Pathology ((EDGP))

  • 107 Accesses

Abstract

Sex cord–stromal tumors of the ovary are believed to arise from and/or to contain combinations of the sex cord and stromal components of the developing gonad. During embryogenesis, condensations of subcoelomic epithelium develop into ovarian cortical stroma, granulosa, theca, Sertoli, and Leydig cells in the female. These tumors comprise about 7% of all ovarian malignancies. The fifth edition of the WHO classification divides the sex cord–stromal tumors into three groups: pure stromal tumors, pure sex cord tumors, and mixed sex cord-stromal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koonings PP, et al. Relative frequency of primary ovarian neoplasms: a 10-year review. Obstet Gynecol. 1989;74(6):921–6.

    CAS  PubMed  Google Scholar 

  2. WHO Classification of Tumours Editorial Board. Female genital tumours. In: WHO classification of tumours series, vol. 4. 5th ed. Lyon: IARC; 2020.

    Google Scholar 

  3. Kurman RJ, Carcangiu ML, Herrington SC, Young RH, editors. WHO classification of tumours of remale reproductive organs. Lyon: IARC; 2014.

    Google Scholar 

  4. Gorlin RJ. Nevoid basal-cell carcinoma syndrome. Medicine (Baltimore). 1987;66(2):98–113.

    Article  CAS  PubMed  Google Scholar 

  5. Irving JA, et al. Cellular fibromas of the ovary: a study of 75 cases including 40 mitotically active tumors emphasizing their distinction from fibrosarcoma. Am J Surg Pathol. 2006;30(8):929–38.

    Article  PubMed  Google Scholar 

  6. Young RH. Ovarian sex cord-stromal tumors: reflections on a 40-year experience with a fascinating group of tumors, including comments on the seminal observations of Robert E. Scully, MD. Arch Pathol Lab Med. 2018;142(12):1459–84.

    Article  CAS  PubMed  Google Scholar 

  7. Olivadese R, et al. Mitotically active cellular fibroma of the ovary recurring after the longest interval of time (16 yr): a challenging case with systematic literature review. Int J Gynecol Pathol. 2021;40(5):441–7.

    Article  PubMed  Google Scholar 

  8. McCluggage WG, et al. Ovarian cellular fibromas lack FOXL2 mutations: a useful diagnostic adjunct in the distinction from diffuse adult granulosa cell tumor. Am J Surg Pathol. 2013;37(9):1450–5.

    Article  PubMed  Google Scholar 

  9. Tsuji T, Catasus L, Prat J. Is loss of heterozygosity at 9q22.3 (PTCH gene) and 19p13.3 (STK11 gene) involved in the pathogenesis of ovarian stromal tumors? Hum Pathol. 2005;36(7):792–6.

    Article  CAS  PubMed  Google Scholar 

  10. Yang EJ, et al. Solitary fibrous tumour of the female genital tract: a clinicopathological analysis of 25 cases. Histopathology. 2018;72(5):749–59.

    Article  PubMed  Google Scholar 

  11. Björkholm E, Silfverswärd C. Theca-cell tumors. Clinical features and prognosis. Acta Radiol Oncol. 1980;19(4):241–4.

    Article  PubMed  Google Scholar 

  12. Staats PN, et al. Luteinized thecomas (thecomatosis) of the type typically associated with sclerosing peritonitis: a clinical, histopathologic, and immunohistochemical analysis of 27 cases. Am J Surg Pathol. 2008;32(9):1273–90.

    Article  PubMed  Google Scholar 

  13. Young RH, Clement PB, Scully RE. Calcified thecomas in young women. A report of four cases. Int J Gynecol Pathol. 1988;7(4):343–50.

    Article  CAS  PubMed  Google Scholar 

  14. Ganesan R, et al. Luteinized adult granulosa cell tumor—a series of 9 cases: revisiting a rare variant of adult granulosa cell tumor. Int J Gynecol Pathol. 2011;30(5):452–9.

    Article  PubMed  Google Scholar 

  15. Stall JN, Young RH. Granulosa cell tumors of the ovary with prominent Thecoma-like foci: a report of 16 cases emphasizing the ongoing utility of the Reticulin stain in the modern era. Int J Gynecol Pathol. 2019;38(2):143–50.

    Article  PubMed  Google Scholar 

  16. Chalvardjian A, Scully RE. Sclerosing stromal tumors of the ovary. Cancer. 1973;31(3):664–70.

    Article  CAS  PubMed  Google Scholar 

  17. Park CK, Kim HS. Clinicopathological characteristics of ovarian Sclerosing stromal tumor with an emphasis on TFE3 overexpression. Anticancer Res. 2017;37(10):5441–7.

    CAS  PubMed  Google Scholar 

  18. Zekioglu O, et al. Clinicopathological and immunohistochemical analysis of sclerosing stromal tumours of the ovary. Arch Gynecol Obstet. 2010;282(6):671–6.

    Article  PubMed  Google Scholar 

  19. Cashell AW, Cohen ML. Masculinizing sclerosing stromal tumor of the ovary during pregnancy. Gynecol Oncol. 1991;43(3):281–5.

    Article  CAS  PubMed  Google Scholar 

  20. Duska LR, Flynn C, Goodman A. Masculinizing sclerosing stromal cell tumor in pregnancy: report of a case and review of the literature. Eur J Gynaecol Oncol. 1998;19(5):441–3.

    CAS  PubMed  Google Scholar 

  21. Chen Q, et al. Sclerosing stromal tumor of the ovary with masculinization, Meig’s syndrome and CA125 elevation in an adolescent girl: a case report. World J Clin Cases. 2020;8(24):6364–72.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gomes Sobrinho DB, et al. Sclerosing stromal tumor of the ovary associated with a Meigs’ syndrome and pregnancy: a case report. Rev Bras Ginecol Obstet. 2013;35(7):331–5.

    Article  PubMed  Google Scholar 

  23. Goebel EA, McCluggage WG, Walsh JC. Mitotically active Sclerosing stromal tumor of the ovary: report of a case series with parallels to mitotically active cellular fibroma. Int J Gynecol Pathol. 2016;35(6):549–53.

    Article  PubMed  Google Scholar 

  24. Roth LM, Czernobilsky B. Perspectives on pure ovarian stromal neoplasms and tumor-like proliferations of the ovarian stroma. Am J Surg Pathol. 2011;35(3):e15–33.

    Article  PubMed  Google Scholar 

  25. Al-Agha OM, et al. FOXL2 is a sensitive and specific marker for sex cord-stromal tumors of the ovary. Am J Surg Pathol. 2011;35(4):484–94.

    Article  PubMed  Google Scholar 

  26. Kim SH, et al. Identification of recurrent FHL2-GLI2 oncogenic fusion in sclerosing stromal tumors of the ovary. Nat Commun. 2020;11(1):44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kawauchi S, et al. Sclerosing stromal tumor of the ovary: a clinicopathologic, immunohistochemical, ultrastructural, and cytogenetic analysis with special reference to its vasculature. Am J Surg Pathol. 1998;22(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  28. Irving JA, Young RH. Microcystic stromal tumor of the ovary: report of 16 cases of a hitherto uncharacterized distinctive ovarian neoplasm. Am J Surg Pathol. 2009;33(3):367–75.

    Article  PubMed  Google Scholar 

  29. Lee SH, et al. Ovarian microcystic stromal tumor: a novel extracolonic tumor in familial Adenomatous polyposis. Genes Chromosomes Cancer. 2015;54(6):353–60.

    Article  CAS  PubMed  Google Scholar 

  30. McCluggage WG, et al. Ovarian microcystic stromal tumors are characterized by alterations in the Beta-catenin-APC pathway and may be an extracolonic manifestation of familial Adenomatous polyposis. Am J Surg Pathol. 2018;42(1):137–9.

    Article  PubMed  Google Scholar 

  31. Zhang Y, et al. Ovarian microcystic stromal tumor with undetermined potential: case study with molecular analysis and literature review. Hum Pathol. 2018;78:171–6.

    Article  PubMed  Google Scholar 

  32. Man X, et al. Ovarian microcystic stromal tumor with omental metastasis: the first case report and literature review. J Ovarian Res. 2021;14(1):73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McCluggage WG, et al. Expanding the morphological spectrum of ovarian microcystic stromal tumour. Histopathology. 2019;74(3):443–51.

    Article  PubMed  Google Scholar 

  34. Irving JA, et al. Microcystic stromal tumor: a distinctive ovarian sex cord-stromal neoplasm characterized by FOXL2, SF-1, WT-1, cyclin D1, and β-catenin nuclear expression and CTNNB1 mutations. Am J Surg Pathol. 2015;39(10):1420–6.

    Article  PubMed  Google Scholar 

  35. Parra-Herran C. Endometrioid tubal intraepithelial neoplasia and bilateral ovarian microcystic stromal tumors harboring APC mutations: report of a case. Int J Gynecol Pathol. 2021;41:337.

    Article  PubMed  Google Scholar 

  36. Vang R, et al. Signet-ring stromal tumor of the ovary: clinicopathologic analysis and comparison with Krukenberg tumor. Int J Gynecol Pathol. 2004;23(1):45–51.

    Article  PubMed  Google Scholar 

  37. Forde GK, et al. Bilateral and multinodular signet-ring stromal tumor of the ovary. Obstet Gynecol. 2010;116(Suppl 2):556–8.

    Article  PubMed  Google Scholar 

  38. Ramzy I. Signet-ring stromal tumor of ovary. Histochemical, light, and electron microscopic study. Cancer. 1976;38(1):166–72.

    Article  CAS  PubMed  Google Scholar 

  39. Dickersin GR, Young RH, Scully RE. Signet-ring stromal and related tumors of the ovary. Ultrastruct Pathol. 1995;19(5):401–19.

    Article  CAS  PubMed  Google Scholar 

  40. Kopczynski J, et al. Oncogenic activation of the Wnt/β-catenin signaling pathway in signet ring stromal cell tumor of the ovary. Appl Immunohistochem Mol Morphol. 2016;24(5):e28–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shaco-Levy R, et al. Ovarian signet-ring stromal tumor: a potential diagnostic pitfall. Int J Surg Pathol. 2008;16(2):180–4.

    Article  PubMed  Google Scholar 

  42. Paraskevas M, Scully RE. Hilus cell tumor of the ovary. A clinicopathological analysis of 12 Reinke crystal-positive and nine crystal-negative cases. Int J Gynecol Pathol. 1989;8(4):299–310.

    Article  CAS  PubMed  Google Scholar 

  43. Nagano T, Otsuki I. Reinvestigation of the fine structure of Reinke’s crystal in the human testicular interstitial cell. J Cell Biol. 1971;51(1):148–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kommoss F, et al. Inhibin expression in ovarian tumors and tumor-like lesions: an immunohistochemical study. Mod Pathol. 1998;11(7):656–64.

    CAS  PubMed  Google Scholar 

  45. Cao QJ, Jones JG, Li M. Expression of calretinin in human ovary, testis, and ovarian sex cord-stromal tumors. Int J Gynecol Pathol. 2001;20(4):346–52.

    Article  CAS  PubMed  Google Scholar 

  46. Jones MW, et al. Immunohistochemical profile of steroid cell tumor of the ovary: a study of 14 cases and a review of the literature. Int J Gynecol Pathol. 2010;29(4):315–20.

    Article  PubMed  Google Scholar 

  47. Zhao C, et al. Identification of the most sensitive and robust immunohistochemical markers in different categories of ovarian sex cord-stromal tumors. Am J Surg Pathol. 2009;33(3):354–66.

    Article  PubMed  Google Scholar 

  48. Hayes MC, Scully RE. Ovarian steroid cell tumors (not otherwise specified). A clinicopathological analysis of 63 cases. Am J Surg Pathol. 1987;11(11):835–45.

    Article  CAS  PubMed  Google Scholar 

  49. Marques A, Portugal R. Ovarian steroid cell tumor in an adolescent with Von Hippel-Lindau syndrome: a case report and review of the literature. Int J Gynecol Pathol. 2020;39(5):473–7.

    Article  PubMed  Google Scholar 

  50. Morani AC, et al. Steroid cell ovarian tumor in a case of von Hippel-Lindau disease: demonstrating lipid content of the mass with MR imaging. Magn Reson Med Sci. 2019;18(4):251–2.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lee IH, et al. Clinicopathologic characteristics of granulosa cell tumors of the ovary: a multicenter retrospective study. J Gynecol Oncol. 2011;22(3):188–95.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ottolina J, et al. Is the endometrial evaluation routinely required in patients with adult granulosa cell tumors of the ovary? Gynecol Oncol. 2015;136(2):230–4.

    Article  PubMed  Google Scholar 

  53. Nakashima N, Young RH, Scully RE. Androgenic granulosa cell tumors of the ovary. A clinicopathologic analysis of 17 cases and review of the literature. Arch Pathol Lab Med. 1984;108(10):786–91.

    CAS  PubMed  Google Scholar 

  54. Young RH, Dickersin GR, Scully RE. Juvenile granulosa cell tumor of the ovary. A clinicopathological analysis of 125 cases. Am J Surg Pathol. 1984;8(8):575–96.

    Article  CAS  PubMed  Google Scholar 

  55. Roth LM. Recent advances in the pathology and classification of ovarian sex cord-stromal tumors. Int J Gynecol Pathol. 2006;25(3):199–215.

    Article  PubMed  Google Scholar 

  56. Scully RE, Clement PB. Tumors of the ovary, maldeveloped gonads, fallopian tube, and broad ligament. In: Atlas of tumor pathology, vol. 3. Washington, DC: American Registry of Pathology; 1998. p. 288.

    Google Scholar 

  57. Young RH. Ovarian sex cord-stromal tumours and their mimics. Pathology. 2018;50(1):5–15.

    Article  CAS  PubMed  Google Scholar 

  58. Heller D, Haddad A, Cracchiolo B. Pseudopapillary granulosa cell tumor: a case of this rare subtype. Int J Surg Pathol. 2016;24(5):425–6.

    Article  CAS  PubMed  Google Scholar 

  59. Fashedemi Y, et al. Adult granulosa cell tumor with high-grade transformation: report of a series with FOXL2 mutation analysis. Am J Surg Pathol. 2019;43(9):1229–38.

    Article  PubMed  Google Scholar 

  60. Rabban JT, Zaloudek CJ. A practical approach to immunohistochemical diagnosis of ovarian germ cell tumours and sex cord-stromal tumours. Histopathology. 2013;62(1):71–88.

    Article  PubMed  Google Scholar 

  61. Costa MJ, et al. Immunohistochemical phenotype of ovarian granulosa cell tumors: absence of epithelial membrane antigen has diagnostic value. Hum Pathol. 1994;25(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  62. Nofech-Mozes S, et al. Immunohistochemical characterization of primary and recurrent adult granulosa cell tumors. Int J Gynecol Pathol. 2012;31(1):80–90.

    Article  CAS  PubMed  Google Scholar 

  63. Lim D, Oliva E. Ovarian sex cord-stromal tumours: an update in recent molecular advances. Pathology. 2018;50(2):178–89.

    Article  CAS  PubMed  Google Scholar 

  64. Shah SP, et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med. 2009;360(26):2719–29.

    Article  CAS  PubMed  Google Scholar 

  65. Bessière L, et al. A hot-spot of in-frame duplications activates the oncoprotein AKT1 in Juvenile granulosa cell tumors. EBioMedicine. 2015;2(5):421–31.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kalfa N, et al. Activating mutations of the stimulatory g protein in juvenile ovarian granulosa cell tumors: a new prognostic factor? J Clin Endocrinol Metab. 2006;91(5):1842–7.

    Article  CAS  PubMed  Google Scholar 

  67. Plevová P, Geržová H. Genetic causes of rare pediatric ovarian tumors. Klin Onkol. 2019;32(Supplementum2):79–91.

    PubMed  Google Scholar 

  68. Heravi-Moussavi A, et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med. 2012;366(3):234–42.

    Article  CAS  PubMed  Google Scholar 

  69. Schultz KA, et al. Ovarian sex cord-stromal tumors, pleuropulmonary blastoma and DICER1 mutations: a report from the international Pleuropulmonary blastoma registry. Gynecol Oncol. 2011;122(2):246–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lim D, Oliva E. Gynecological neoplasms associated with paraneoplastic hypercalcemia. Semin Diagn Pathol. 2019;36(4):246–59.

    Article  CAS  PubMed  Google Scholar 

  71. Witkowski L, et al. Small-cell carcinoma of the ovary of hypercalcemic type (malignant Rhabdoid tumor of the ovary): a review with recent developments on pathogenesis. Surg Pathol Clin. 2016;9(2):215–26.

    Article  PubMed  Google Scholar 

  72. Gallo A, et al. HNF1β is a sensitive and specific novel marker for yolk sac tumor: a tissue microarray analysis of 601 testicular germ cell tumors. Mod Pathol. 2020;33(11):2354–60.

    Article  CAS  PubMed  Google Scholar 

  73. Xiao GQ, et al. ZBTB16 is a sensitive and specific marker in detection of metastatic and extragonadal yolk sac tumour. Histopathology. 2017;71(4):562–9.

    Article  PubMed  Google Scholar 

  74. Oliva E, Alvarez T, Young RH. Sertoli cell tumors of the ovary: a clinicopathologic and immunohistochemical study of 54 cases. Am J Surg Pathol. 2005;29(2):143–56.

    Article  PubMed  Google Scholar 

  75. Tavassoli FA, Norris HJ. Sertoli tumors of the ovary. A clinicopathologic study of 28 cases with ultrastructural observations. Cancer. 1980;46(10):2281–97.

    Article  CAS  PubMed  Google Scholar 

  76. Zung A, et al. Sertoli cell tumor causing precocious puberty in a girl with Peutz-Jeghers syndrome. Gynecol Oncol. 1998;70(3):421–4.

    Article  CAS  PubMed  Google Scholar 

  77. Alikasifoglu A, et al. Feminizing Sertoli cell tumor associated with Peutz-Jeghers syndrome. J Pediatr Endocrinol Metab. 2002;15(4):449–52.

    Article  PubMed  Google Scholar 

  78. Young RH, Scully RE. Ovarian Sertoli cell tumors: a report of 10 cases. Int J Gynecol Pathol. 1984;2(4):349–63.

    Article  CAS  PubMed  Google Scholar 

  79. Zhao C, et al. SF-1 is a diagnostically useful immunohistochemical marker and comparable to other sex cord-stromal tumor markers for the differential diagnosis of ovarian sertoli cell tumor. Int J Gynecol Pathol. 2008;27(4):507–14.

    Article  CAS  PubMed  Google Scholar 

  80. Zhao C, et al. Comparative analysis of alternative and traditional immunohistochemical markers for the distinction of ovarian sertoli cell tumor from endometrioid tumors and carcinoid tumor: a study of 160 cases. Am J Surg Pathol. 2007;31(2):255–66.

    Article  PubMed  Google Scholar 

  81. Zhao C, et al. Diagnostic utility of WT1 immunostaining in ovarian sertoli cell tumor. Am J Surg Pathol. 2007;31(9):1378–86.

    Article  PubMed  Google Scholar 

  82. Conlon N, et al. A survey of DICER1 hotspot mutations in ovarian and testicular sex cord-stromal tumors. Mod Pathol. 2015;28(12):1603–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fuller PJ, Leung D, Chu S. Genetics and genomics of ovarian sex cord-stromal tumors. Clin Genet. 2017;91(2):285–91.

    Article  CAS  PubMed  Google Scholar 

  84. Young RH, Scully RE. Ovarian Sertoli-Leydig cell tumors. A clinicopathological analysis of 207 cases. Am J Surg Pathol. 1985;9(8):543–69.

    Article  CAS  PubMed  Google Scholar 

  85. Gui T, et al. A clinicopathological analysis of 40 cases of ovarian Sertoli-Leydig cell tumors. Gynecol Oncol. 2012;127(2):384–9.

    Article  PubMed  Google Scholar 

  86. Chadha S, Honnebier WJ, Schaberg A. Raised serum alpha-fetoprotein in Sertoli-Leydig cell tumor (androblastoma) of ovary: report of two cases. Int J Gynecol Pathol. 1987;6(1):82–8.

    Article  CAS  PubMed  Google Scholar 

  87. Omeroglu A, Husain AN, Siziopikou K. Pathologic quiz case: a papillary ovarian tumor in a 4-year-old-girl. Arch Pathol Lab Med. 2002;126(3):377–8.

    Article  PubMed  Google Scholar 

  88. McCluggage WG, Young RH. Ovarian Sertoli-Leydig cell tumors with Pseudoendometrioid tubules (Pseudoendometrioid Sertoli-Leydig cell tumors). Am J Surg Pathol. 2007;31(4):592–7.

    Article  PubMed  Google Scholar 

  89. Mooney EE, et al. Retiform Sertoli-Leydig cell tumours: clinical, morphological and immunohistochemical findings. Histopathology. 2002;41(2):110–7.

    Article  CAS  PubMed  Google Scholar 

  90. Young RH, Prat J, Scully RE. Ovarian Sertoli-Leydig cell tumors with heterologous elements. I. Gastrointestinal epithelium and carcinoid: a clinicopathologic analysis of thirty-six cases. Cancer. 1982;50(11):2448–56.

    Article  CAS  PubMed  Google Scholar 

  91. Prat J, Young RH, Scully RE. Ovarian Sertoli-Leydig cell tumors with heterologous elements. II. Cartilage and skeletal muscle: a clinicopathologic analysis of twelve cases. Cancer. 1982;50(11):2465–75.

    Article  CAS  PubMed  Google Scholar 

  92. Al-Hussaini M, et al. A report of ovarian Sertoli-Leydig cell tumors with heterologous intestinal-type glands and alpha fetoprotein elevation and review of the literature. Int J Gynecol Pathol. 2018;37(3):275–83.

    Article  CAS  PubMed  Google Scholar 

  93. Schultz KAP, et al. DICER1-related Sertoli-Leydig cell tumor and gynandroblastoma: clinical and genetic findings from the international ovarian and testicular stromal tumor registry. Gynecol Oncol. 2017;147(3):521–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zou Y, et al. Absence of DICER1, CTCF, RPL22, DNMT3A, TRRAP, IDH1 and IDH2 hotspot mutations in patients with various subtypes of ovarian carcinomas. Biomed Rep. 2015;3(1):33–7.

    Article  PubMed  Google Scholar 

  95. de Kock L, et al. DICER1 mutations are consistently present in moderately and poorly differentiated Sertoli-Leydig cell tumors. Am J Surg Pathol. 2017;41(9):1178–87.

    Article  PubMed  Google Scholar 

  96. Karnezis AN, et al. DICER1 and FOXL2 mutation status correlates with clinicopathologic features in ovarian Sertoli-Leydig cell tumors. Am J Surg Pathol. 2019;43(5):628–38.

    Article  PubMed  Google Scholar 

  97. Buza N, Wong S, Hui P. FOXL2 mutation analysis of ovarian sex cord-stromal tumors: genotype-phenotype correlation with diagnostic considerations. Int J Gynecol Pathol. 2018;37(4):305–15.

    Article  CAS  PubMed  Google Scholar 

  98. Scully RE. Sex cord tumor with annular tubules a distinctive ovarian tumor of the Peutz-Jeghers syndrome. Cancer. 1970;25(5):1107–21.

    Article  CAS  PubMed  Google Scholar 

  99. Young RH, et al. Ovarian sex cord tumor with annular tubules: review of 74 cases including 27 with Peutz-Jeghers syndrome and four with adenoma malignum of the cervix. Cancer. 1982;50(7):1384–402.

    Article  CAS  PubMed  Google Scholar 

  100. Deavers MT, et al. Ovarian sex cord-stromal tumors: an immunohistochemical study including a comparison of calretinin and inhibin. Mod Pathol. 2003;16(6):584–90.

    Article  PubMed  Google Scholar 

  101. Onder S, et al. The role of FOXL2, SOX9, and β-catenin expression and DICER1 mutation in differentiating sex cord tumor with annular tubules from other sex cord tumors of the ovary. Virchows Arch. 2021;479(2):317–24.

    Article  CAS  PubMed  Google Scholar 

  102. Connolly DC, et al. Somatic mutations in the STK11/LKB1 gene are uncommon in rare gynecological tumor types associated with Peutz-Jegher’s syndrome. Am J Pathol. 2000;156(1):339–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wilberger A, Yang B. Gynandroblastoma with juvenile granulosa cell tumor and concurrent renal cell carcinoma: a case report and review of literature. Int J Surg Pathol. 2015;23(5):393–8.

    Article  CAS  PubMed  Google Scholar 

  104. Limaïem F, et al. Gynandroblastoma. Report of an unusual ovarian tumour and literature review. Pathologica. 2008;100(1):13–7.

    PubMed  Google Scholar 

  105. Takeda A, et al. Gynandroblastoma with a juvenile granulosa cell component in an adolescent: case report and literature review. J Pediatr Adolesc Gynecol. 2017;30(2):251–5.

    Article  PubMed  Google Scholar 

  106. Wang Y, et al. DICER1 hot-spot mutations in ovarian gynandroblastoma. Histopathology. 2018;73(2):306–13.

    Article  PubMed  Google Scholar 

  107. Neubecker RD, Breen SL. Gynandroblastoma. A report of five cases, with a discussion of the histogenesis and classification of ovarian tumors. Am J Clin Pathol. 1962;38:60–9.

    Article  CAS  PubMed  Google Scholar 

  108. Fukunaga M, Endo Y, Ushigome S. Gynandroblastoma of the ovary: a case report with an immunohistochemical and ultrastructural study. Virchows Arch. 1997;430(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  109. Seidman JD. Unclassified ovarian gonadal stromal tumors. A clinicopathologic study of 32 cases. Am J Surg Pathol. 1996;20(6):699–706.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raji Ganesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lastra, R.R., Ganesan, R. (2023). Sex Cord-Stromal Tumors. In: Wilkinson, N. (eds) Pathology of the Ovary, Fallopian Tube and Peritoneum. Essentials of Diagnostic Gynecological Pathology. Springer, Cham. https://doi.org/10.1007/978-3-031-39659-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39659-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39658-8

  • Online ISBN: 978-3-031-39659-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics