Skip to main content

Commentary on the Flat-Jack Test – Factors Influencing the Measurements

  • Conference paper
  • First Online:
Structural Analysis of Historical Constructions (SAHC 2023)

Part of the book series: RILEM Bookseries ((RILEM,volume 47))

  • 773 Accesses

Abstract

The paper presents the results of several flat-jack tests conducted on large sections of brick walls prepared in a laboratory. The influence of two basic factors was studied – the shape of the flat-jacks and distance between them – on the magnitude of the recorded strains. The three most common flat-jack shapes (semi-circle, rounded-rectangle and rectangle) were used for that purpose. The aforementioned spacing adopted for the purpose of the test was 3, 5 and 7 layers of bricks forming the analyzed brick wall specimen. Both of these factors have a significant impact on the boundary conditions of the test and the recorded results. For the purpose of comparison, brick prisms of a height corresponding to the spacing of the flat-jacks were cut out of the tested walls. The entire walls and then the cut out prisms were subjected to a load with a compressive force in order to estimate the modulus of elasticity E of the brick wall. Comparison of the values obtained shows that the semi-circle flat-jacks widely used in engineering practice might overestimate the rigidity of the wall tested. The reason seems to be the small surface area of this type of flat-jack and insufficient depth of its placement inside the wall bed joint. Only rounded-rectangle and rectangle flat-jacks allowed for estimating results that were more similar to those recorded in the other tests on masonry. Double flat-jacks testing allows for a minor-destructive assessment of the deformation parameters of the outer layer of brick wall. The recorded values were comparable with the results obtained by other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASTM D4729-19: Standard Test Method for In Situ Stress and Modulus of Deformation Using the Flat Jack Method. ASTM International (2019). https://doi.org/10.1520/D4729-19

  2. Rossi, P.: Analysis of mechanical characteristics of brick masonry tested by means of in-situ tests. In: 6th International Brick and Block Masonry Conference, Rome, Italy, pp. 77–85 (1982)

    Google Scholar 

  3. ASTM C1196-20: Standard Test Method for In Situ Compressive Stress Within Solid Unit Masonry Estimated Using Flatjack Measurements. ASTM International (2020). https://doi.org/10.1520/C1196-20

  4. ASTM C1197-20e1: Standard Test Method for In Situ Measurement of Masonry Deformability Properties Using the Flatjack Method. ASTM International (2020). https://doi.org/10.1520/C1197-20E01

  5. RILEM TC 177-MDT, RILEM Recommendation MDT. D.4: In-situ stress tests based on the flat jack. Mater. Struct. 37, 491–496 (2004). https://doi.org/10.1007/BF02481588

  6. RILEM TC 177-MDT, RILEM Recommendation MDT. D.5: In-situ stress – strain behaviour tests based on the flat jack. Mater. Struct. 37, 497–501 (2004). https://doi.org/10.1007/BF02481589

  7. Binda, L., Saisi, A., Zanzi, L.: Sonic tomography and flat-jack tests as complementary investigation procedures for the stone pillars of the temple of S. Nicolo` l’Arena (Italy). NDT&E Intl. 36, 215–227 (2003). https://doi.org/10.1016/S0963-8695(02)00066-X

  8. Lombillo, I., Thomas, C., Villegas, L., Fernández-Álvarez, J.P., Norambuena-Contreras, J.: Mechanical characterization of rubble stone masonry walls using non and minor destructive tests. Constr. Build. Mater. 43, 266–277 (2013). https://doi.org/10.1016/j.conbuildmat.2013.02.007

    Article  Google Scholar 

  9. Manning, E., Ramos, L.F., Fernandes, F.M.: Tube-jack testing for irregular masonry walls: regular masonry wall testing. J. Nondestr. Eval. 35(3), 1–13 (2016). https://doi.org/10.1007/s10921-016-0360-x

    Article  Google Scholar 

  10. Casarin, F., et al.: Mechanical characterization of masonry typologies in Israel via flat jack tests. In: Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F. (eds.) Structural Analysis of Historical Constructions. RB, vol. 18, pp. 625–633. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99441-3_67

    Chapter  Google Scholar 

  11. Tacas, K., Gonzales, M., Aguilar, R.: Mechanical characterization of adobe constructions using flat jack tests: case study of the Virgen de la Asunción de Sacsamarca Church. In: Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F. (eds.) Structural Analysis of Historical Constructions. RB, vol. 18, pp. 706–715. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99441-3_76

    Chapter  Google Scholar 

  12. Gonen, S., Soyoz, S.: Investigations on the elasticity modulus of stone masonry. Structures 30, 378–389 (2021). https://doi.org/10.1016/j.istruc.2021.01.035

    Article  Google Scholar 

  13. Pinho, F.F.S., Serra, R.J.G., Saraiva, A.F.L., Lúcio, V.J.G.: Performance of single and double flat jacks in stone masonry lab tests. J. Build. Eng. 42, 102465 (2021). https://doi.org/10.1016/j.jobe.2021.102465

    Article  Google Scholar 

  14. Costa, C., Ribeiro, D., Jorge, P., Silva, R., Arêde, A., Calçada, R.: Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters. Eng. Struct. 123, 354–371 (2016). https://doi.org/10.1016/j.engstruct.2016.05.044

    Article  Google Scholar 

  15. Nobile, L., Gentilini, C., Bartolomeo, V., Bonagura, M.: Micro-destructive flat-jack test for the diagnosis of historic masonry. Key Eng. Mater. 417–418, 741–744 (2009). https://doi.org/10.4028/www.scientific.net/kem.417-418.741

    Article  Google Scholar 

  16. Binda, L., Cantini, L., Tedeschi, C.: Diagnosis of historic masonry structures using non-destructive techniques. In: Büyüköztürk, O., Taşdemir, M.A., Güneş, O., Akkaya, Y. (eds.) Nondestructive Testing of Materials and Structures, vol. 6, pp. 1089–1102. Springer Netherlands, Dordrecht (2013). https://doi.org/10.1007/978-94-007-0723-8_152

    Chapter  Google Scholar 

  17. Santini, S., Baggio, C., Sabbatini, V., Sebastiani, C.: Onsite testing for nonlinear analysis of an earthquake damaged historical church in Italy. Appl. Sci. 11, 11755 (2021). https://doi.org/10.3390/app112411755

    Article  Google Scholar 

  18. ASTM C1531-22: Standard Test Methods for In Situ Measurement of Masonry Mortar Joint Shear Strength Index. ASTM International (2022). https://doi.org/10.1520/C1531-22

  19. Foppoli, D., Armanasco, A.: Laboratory and in situ calibrations of new flat jack method for assessing masonry shear characteristics. In: Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F. (eds.) Structural Analysis of Historical Constructions. RB, vol. 18, pp. 513–522. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99441-3_55

    Chapter  Google Scholar 

  20. Armanasco, A., Foppoli, D.: A flat jacks method for in situ testing of brick masonry shear characteristics. Constr. Build. Mater. 262, 119840 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119840

    Article  Google Scholar 

  21. Pallarés, F.J., Betti, M., Bartoli, G., Pallarés, L.: Structural health monitoring (SHM) and Nondestructive testing (NDT) of slender masonry structures: a practical review. Constr. Build. Mater. 297, 123768 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123768

    Article  Google Scholar 

  22. Guadagnuolo, M., Aurilio, M., Basile, A., Faella, G.: Modulus of elasticity and compressive strength of tuff masonry: results of a wide set of flat-jack tests. Buildings 10(5), 1–18, 84 (2020). https://doi.org/10.3390/buildings10050084

  23. UIC 778-3: Recommendations for the inspection, assessment and maintenance of masonry arch bridges (2019)

    Google Scholar 

  24. Medeiros, W.A., Soriani, M.O., Parsekian, G.A.: Innovation in flat-jack application to evaluate modern high-strength hollow concrete block masonry. Constr. Build. Mater. 255, 119341 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119341

    Article  Google Scholar 

  25. Manning, E., Ramos, L.F., Fernandes, F.M.: Numerical modeling of single tube-jack and flat-jack tests in an unreinforced masonry wall with a regular typology. In: Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F. (eds.) Structural Analysis of Historical Constructions. RB, vol. 18, pp. 315–322. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99441-3_33

    Chapter  Google Scholar 

  26. Łątka, D., Matysek P.: The estimation of compressive stress level in brick masonry using the flat-jack method. In: International Conference on Analytical Models and New Concepts in Concrete and Masonry Structures (AMCM’2017), Proc. Eng. 193, 266–272. Elsevier, Gliwice (2017). https://doi.org/10.1016/j.proeng.2017.06.213

  27. Rios, A.J., O’Dwyer, D.: Experimental validation for the application of the flat jack test in cob walls. Constr. Build. Mater. 254, 119148 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119148

    Article  Google Scholar 

  28. Rios, A.J., O’Dwyer, D.: Adaptations of the flat jack test for its application in cob walls. MethodsX 7, 101003 (2020). https://doi.org/10.1016/j.mex.2020.101003

    Article  Google Scholar 

  29. Fedele, R., Maier, G.: Flat-jack tests and inverse analysis for the identification of stress states and elastic properties in concrete dams. Meccanica 42, 387–402 (2007). https://doi.org/10.1007/s11012-007-9061-y

    Article  MATH  Google Scholar 

  30. Mckenney, A.M., Corkum, A.G.: Experimental evaluation of rapid flat jack testing with various shaped saw-cut slots. Rock Mech. Rock Eng. 53(1), 455–466 (2019). https://doi.org/10.1007/s00603-019-01913-6

    Article  Google Scholar 

  31. Łątka, D., Matysek, P.: Badania konstrukcji murowych in-situ. Inżynieria i Budownictwo 73(7), 360–363 (2017) (in Polish)

    Google Scholar 

  32. EN 1015-11: Methods of test for mortar for masonry – Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar, 654. European Committee for Standardization (CEN), Brussels, Belgium (2019)

    Google Scholar 

  33. EN 772-1:2011+A1:2015, Methods of test for masonry units – Part 1: Determination of Compressive Strength. European Committee for Standardization (CEN): Brussels, Belgium (2015)

    Google Scholar 

  34. EN 1996-1-1: Eurocode 6 – Design of Masonry Structures – Part 1-1: General Rules for Reinforced and Unreinforced Masonry Structures; 650. European Committee for Standardization (CEN), Brussels, Belgium (2005)

    Google Scholar 

  35. Simões, A., Bento, R., Gago, A., Lopes, M.: Mechanical characterization of masonry walls with flat-jack tests. Exp. Tech. 40, 1163–1178 (2016). https://doi.org/10.1111/ext.12133

    Article  Google Scholar 

  36. Carpinteri, A., Invernizzi, S., Lacidogna, G.: Historical brick-masonry subjected to double flat-jack test: acoustic emissions and scale effects on cracking density. Constr. Build. Mater. 23, 2813–2820 (2009). https://doi.org/10.1016/j.conbuildmat.2009.03.003

    Article  Google Scholar 

  37. EN 1052-1:1998: Methods of Test for Masonry – Part 1: Determination of Compressive Strength. Brussels, Belgium, European Committee for Standardization (CEN) (1998)

    Google Scholar 

  38. Cescatti E., Benetta M.D., Modena C., Casarin F.: Analysis and evaluations of flat jack test on a wide existing masonry buildings sample. In: Brick and Block Masonry, pp. 1–8. CRC Press (2016). https://doi.org/10.1201/B21889-184

  39. Carpinteri A., Invernizzi S., Lacidogna G.: Numerical simulation of brick-masonry subjected to the double flat-jack test. In: Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, pp 1–8. Taylor & Francis, London (2007)

    Google Scholar 

  40. Dorji, J., Zahra, T., Thambiratnam, D., Lee, D.: Strength assessment of old masonry arch bridges through moderate destructive testing methods. Constr. Build. Mater. 278, 122391 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122391

    Article  Google Scholar 

  41. Alecci, V., Ayala, A.G., De Stefano, M., Marra, A.M., Nudo, R., Stipo, G.: Influence of the masonry wall thickness on the outcomes of double flat-jack test: Experimental and numerical investigation. Constr. Build. Mater. 285, 122912 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122912

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawid Łątka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Łątka, D. (2024). Commentary on the Flat-Jack Test – Factors Influencing the Measurements. In: Endo, Y., Hanazato, T. (eds) Structural Analysis of Historical Constructions. SAHC 2023. RILEM Bookseries, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-39603-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39603-8_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39602-1

  • Online ISBN: 978-3-031-39603-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics