Skip to main content

Why Deep Surgical Models Fail?: Revisiting Surgical Action Triplet Recognition Through the Lens of Robustness

  • Conference paper
  • First Online:
Trustworthy Machine Learning for Healthcare (TML4H 2023)

Abstract

Surgical action triplet recognition provides a better understanding of the surgical scene. This task is of high relevance as it provides the surgeon with context-aware support and safety. The current go-to strategy for improving performance is the development of new network mechanisms. However, the performance of current state-of-the-art techniques is substantially lower than other surgical tasks. Why is this happening? This is the question that we address in this work. We present the first study to understand the failure of existing deep learning models through the lens of robustness and explainability. Firstly, we study current existing models under weak and strong \(\delta -\)perturbations via an adversarial optimisation scheme. We then analyse the failure modes via feature based explanations. Our study reveals that the key to improving performance and increasing reliability is in the core and spurious attributes. Our work opens the door to more trustworthy and reliable deep learning models in surgical data science.

https://yc443.github.io/robustIVT/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen-Zhu, Z., Li, Y.: Feature purification: how adversarial training performs robust deep learning. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 977–988. IEEE (2022)

    Google Scholar 

  2. Aviles, A.I., Alsaleh, S.M., Hahn, J.K., Casals, A.: Towards retrieving force feedback in robotic-assisted surgery: a supervised neuro-recurrent-vision approach. IEEE Trans. Haptics 10(3), 431–443 (2016)

    Article  Google Scholar 

  3. Blum, T., Feußner, H., Navab, N.: Modeling and segmentation of surgical workflow from laparoscopic video. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 400–407. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15711-0_50

    Chapter  Google Scholar 

  4. Dergachyova, O., Bouget, D., Huaulmé, A., Morandi, X., Jannin, P.: Automatic data-driven real-time segmentation and recognition of surgical workflow. Int. J. Comput. Assist. Radiol. Surg. 11(6), 1081–1089 (2016). https://doi.org/10.1007/s11548-016-1371-x

    Article  Google Scholar 

  5. Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Tran, B., Madry, A.: Adversarial robustness as a prior for learned representations. arXiv preprint arXiv:1906.00945 (2019)

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). https://doi.org/10.48550/ARXIV.1512.03385

  7. Hsieh, C.Y., et al.: Evaluations and methods for explanation through robustness analysis. arXiv preprint arXiv:2006.00442 (2020)

  8. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2016). https://doi.org/10.48550/ARXIV.1608.06993

  9. Katić, D., et al.: Knowledge-driven formalization of laparoscopic surgeries for rule-based intraoperative context-aware assistance. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds.) IPCAI 2014. LNCS, vol. 8498, pp. 158–167. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07521-1_17

    Chapter  Google Scholar 

  10. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: International Conference on Machine Learning, pp. 1885–1894. PMLR (2017)

    Google Scholar 

  11. Liu, L., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Multi-task deep model with margin ranking loss for lung nodule analysis. IEEE Trans. Med. Imaging 39(3), 718–728 (2019)

    Article  Google Scholar 

  12. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows (2021). https://doi.org/10.48550/ARXIV.2103.14030

  13. Lo, B.P.L., Darzi, A., Yang, G.-Z.: Episode classification for the analysis of tissue/instrument interaction with multiple visual cues. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 230–237. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39899-8_29

    Chapter  Google Scholar 

  14. Maier-Hein, L., et al.: Surgical data science: enabling next-generation surgery. arXiv preprint arXiv:1701.06482 (2017)

  15. Neumuth, T., Strauß, G., Meixensberger, J., Lemke, H.U., Burgert, O.: Acquisition of process descriptions from surgical interventions. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 602–611. Springer, Heidelberg (2006). https://doi.org/10.1007/11827405_59

    Chapter  Google Scholar 

  16. Nwoye, C.I., et al.: Recognition of instrument-tissue interactions in endoscopic videos via action triplets. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 364–374. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_35

    Chapter  Google Scholar 

  17. Nwoye, C.I., Padoy, N.: Data splits and metrics for method benchmarking on surgical action triplet datasets. arXiv preprint arXiv:2204.05235 (2022)

  18. Nwoye, C.I., et al.: Rendezvous: attention mechanisms for the recognition of surgical action triplets in endoscopic videos. Med. Image Anal. 78, 102433 (2022)

    Article  Google Scholar 

  19. Olah, C., et al.: The building blocks of interpretability. Distill 3(3), e10 (2018)

    Article  Google Scholar 

  20. Plumb, G., Molitor, D., Talwalkar, A.S.: Model agnostic supervised local explanations. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  21. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  22. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: International Conference on Machine Learning, pp. 3145–3153. PMLR (2017)

    Google Scholar 

  23. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  24. Singla, S., Feizi, S.: Salient imagenet: how to discover spurious features in deep learning? In: International Conference on Learning Representations (2021)

    Google Scholar 

  25. Singla, S., Nushi, B., Shah, S., Kamar, E., Horvitz, E.: Understanding failures of deep networks via robust feature extraction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12853–12862 (2021)

    Google Scholar 

  26. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

    Google Scholar 

  27. Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., De Mathelin, M., Padoy, N.: EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2016)

    Article  Google Scholar 

  28. Velanovich, V.: Laparoscopic vs open surgery. Surg. Endosc. 14(1), 16–21 (2000)

    Article  Google Scholar 

  29. Vercauteren, T., Unberath, M., Padoy, N., Navab, N.: CAI4CAI: the rise of contextual artificial intelligence in computer-assisted interventions. Proc. IEEE 108(1), 198–214 (2019)

    Article  Google Scholar 

  30. Wilson, E.B., Bagshahi, H., Woodruff, V.D.: Overview of general advantages, limitations, and strategies. In: Kim, K.C. (ed.) Robotics in General Surgery, pp. 17–22. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-8739-5_3

    Chapter  Google Scholar 

  31. Wong, E., Santurkar, S., Madry, A.: Leveraging sparse linear layers for debuggable deep networks. In: International Conference on Machine Learning, pp. 11205–11216. PMLR (2021)

    Google Scholar 

  32. Xu, K., et al.: Structured adversarial attack: towards general implementation and better interpretability. arXiv preprint arXiv:1808.01664 (2018)

  33. Yeh, C.K., Hsieh, C.Y., Suggala, A., Inouye, D.I., Ravikumar, P.K.: On the (in) fidelity and sensitivity of explanations. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  34. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  35. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  36. Zisimopoulos, O., et al.: DeepPhase: surgical phase recognition in CATARACTS videos. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 265–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_31

    Chapter  Google Scholar 

Download references

Acknowledgements

YC and AIAR greatly acknowledge support from a C2D3 Early Career Research Seed Fund and CMIH EP/T017961/1, University of Cambridge.

CBS acknowledges support from the Philip Leverhulme Prize, the Royal Society Wolfson Fellowship, the EPSRC advanced career fellowship EP/V029428/1, EPSRC grants EP/S026045/1 and EP/T003553/1, EP/N014588/1, EP/T017961/1, the Wellcome Innovator Awards 215733/Z/19/Z and 221633/Z/20/Z, the European Union Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No. 777826 NoMADS, the Cantab Capital Institute for the Mathematics of Information and the Alan Turing Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqi Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, Y., Liu, L., Wang, S., Jin, Y., Schönlieb, CB., Aviles-Rivero, A.I. (2023). Why Deep Surgical Models Fail?: Revisiting Surgical Action Triplet Recognition Through the Lens of Robustness. In: Chen, H., Luo, L. (eds) Trustworthy Machine Learning for Healthcare. TML4H 2023. Lecture Notes in Computer Science, vol 13932. Springer, Cham. https://doi.org/10.1007/978-3-031-39539-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39539-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39538-3

  • Online ISBN: 978-3-031-39539-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics