Abstract
The tendon locking mechanism (TLM) in the avian foot allows birds to perch on a tree or grasp prey for long periods of time with low energy input. In this study, we present a soft robotic pneumatic bending actuator system inspired by the TLM, consisting of three flexible main components. The first component is an index finger-sized soft robotic pneumatic bending actuator (SPA) with a 90° pre-curved shape that stretches in the opposite direction to classical designs when pressurized. The other two components are a tendon that interconnects the SPA’s air chambers and a soft pneumatic tendon sheath (SPTS) that can lock the movement of the tendon. The SPTS requires 160 kPa of pressurized air to release the tendon and locks it through an elastic ligament-based design when actuation stops. The bending actuator can thus be fully stretched with as little as 60 kPa, while generating up to 4.61 ± 0.38 N of block force. This design allows the construction of grippers that can be operated at low air pressure and do not require actuation while gripping and holding objects.
Keywords
- Soft robotics
- Soft machines
- Biomimetics
- Additive manufacturing
- FDM printing
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015). https://doi.org/10.1038/nature14543
Schaffner, M., et al.: 3D printing of robotic soft actuators with programmable bioinspired architectures. Nat. Commun. 9(1), 878 (2018). https://doi.org/10.1038/s41467-018-03216-w
Ilievski, F., et al.: Soft robotics for chemists. Angew. Chem. 123(8), 1930–1935 (2011). https://doi.org/10.1002/ange.201006464
Mosadegh, B., et al.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24(15), 2163–2170 (2014). https://doi.org/10.1002/adfm.201303288
Wang, Z., Chathuranga, D.S., Hirai, S.: 3D printed soft gripper for automatic lunch box packing. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 503–508. IEEE (2016). https://doi.org/10.1109/ROBIO.2016.7866372
Kappel, P., Kramp, C., Speck, T., Tauber, F.J.: Application-oriented comparison of two 3D printing processes for the manufacture of pneumatic bending actuators for bioinspired mac-roscopic soft gripper systems. In: Hunt, A., Vouloutsi, V., Moses, K., Quinn, R., Mura, A., Prescott, T., Verschure, P.F.M.J. (eds.) Biomimetic and Biohybrid Systems, pp. 54–67. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-20470-8_6
Tang, Y., et al.: Leveraging elastic instabilities for amplified performance: spine-inspired high-speed and high-force soft robots. Sci. Adv. 6(19), eaaz6912 (2020). https://doi.org/10.1126/sciadv.aaz6912
Wang, X., Khara, A., Chen, C.: A soft pneumatic bistable reinforced actuator bioinspired by Venus Flytrap with enhanced grasping capability. Bioinspir. Biomim. 15(5), 056017 (2020). https://doi.org/10.1088/1748-3190/aba091
Crowley, G.B., Zeng, X., Su, H.-J.: A 3D printed soft robotic gripper with a variable stiffness enabled by a novel positive pressure layer jamming technology. In IEEE Robot. Autom. Lett. 7(2), 5477–5482 (2022). https://doi.org/10.1109/LRA.2022.3157448
Wei, Y., et al.: A novel, variable stiffness robotic gripper based on integrated soft actuating and particle jamming. So. Ro., 3(3), 134–143 (2016). https://doi.org/10.1089/soro.2016.0027
Zhang, Y.-F., et al.: Fast‐response, stiffness‐tunable soft actuator by hybrid multimaterial 3D printing. Adv. Funct. Mater. 29(15), 1806698 (2019). https://doi.org/10.1002/adfm.201806698
Pal, A., Goswami, D., Martinez, R.V.: Elastic ernergy storage enables rapid and program-mable actuation in soft machines. Adv. Funct. Mater. 30(1), 1906603 (2020). https://doi.org/10.1002/adfm.201906603
Wehner, M., et al.: Pneumatic energy sources for autonomous and wearable soft robotics. So. Ro. 1(4), 263–274 (2014). https://doi.org/10.1089/soro.2014.0018
Diteesawat, R.S., Helps, T., Taghavi, M., Rossiter, J.: Electro-pneumatic pumps for soft ro-botics. Sci. Robot. 6(51), abc3721 (2021). https://doi.org/10.1126/scirobotics.abc3721
Quinn, T.H., Baumel, J.J.: The digital tendon locking mechanism of the avian foot (Aves). Zoomorphology 109, 281–293 (1990). https://doi.org/10.1007/BF00312195
Conrad, S., Speck. T., Tauber. F.J.: Tool changing 3D printer for rapid prototyping of advanced soft robotic elements. Bioinspir. Biomim. 16(5), (2021). https://doi.org/10.1088/1748-3190/ac095a
Nacy, S., Abbood, W., Dermitzakis, K.: Tendon type robotic gripper with frictional self-locking mechanism. IJAER 13(9), 14393–14401 (2018)
Hsu, J., Yoshida, E., Harada, K., Kheddar, A.: Self-locking underactuated mechanism for robotic gripper. In: 2017 IEEE International Conference on Advanced Intelligent Mechatron-ics (AIM), pp. 620–627. IEEE (2017). https://doi.org/10.1109/AIM.2017.8014086
Funding
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2193/1 – 390951807.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kappel, P., Kürner, L., Speck, T., Tauber, F. (2023). A Pneumatic Bending Actuator System Inspired by the Avian Tendon Locking Mechanism. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14158. Springer, Cham. https://doi.org/10.1007/978-3-031-39504-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-39504-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-39503-1
Online ISBN: 978-3-031-39504-8
eBook Packages: Computer ScienceComputer Science (R0)