Skip to main content

Pulmonary Infection

  • Chapter
  • First Online:
The Infectious Diseases Consult Handbook
  • 305 Accesses

Abstract

While ID is not always consulted for run-of-the-mill community-acquired pneumonia, assistance in the diagnosis and management of pulmonary infections are common requests. Infection can involve the gas-exchanging portion of the lungs (parenchyma) such as in pneumonia or areas that are not aerated, such as pleural infections (empyema). Other pathology, such as tumors, can alter typical physiology and create niches favorable for anaerobic bacteria. Understanding the source of infection (such as in community-acquired pneumonia versus hospital-acquired pneumonia) can further inform treatment choices. Microorganisms that have evolved to evade immune defenses, such as intracellular pathogens that can cause atypical pneumonias, keep us vigilant when selecting antibiotics. Furthermore, patients with structural lung disease are unable to clear organisms from their lower respiratory system and develop colonization by different species that can flare as infections. Pulmonary infections are nothing to sneeze at!

In this section, we will focus on aspiration pneumonia, some diagnostic considerations related to sputum, unique features of atypical pneumonias, and management considerations in patients with structural lung disease that are more vulnerable to pulmonary infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Maarel-Wierink CD, Vanobbergen JNO, Bronkhorst EM, Schols JMGA, de Baat C. Risk factors for aspiration pneumonia in frail older people: a systematic literature review. J Am Med Dir Assoc. 2011;12:344–54. https://doi.org/10.1016/j.jamda.2010.12.099.

    Article  PubMed  Google Scholar 

  2. Joundi RA, Wong BM, Leis JA. Antibiotics “just-in-case” in a patient with aspiration pneumonitis. JAMA Intern Med. 2015;175:489–90. https://doi.org/10.1001/jamainternmed.2014.8030.

    Article  PubMed  Google Scholar 

  3. Binz J, Heft M, Robinson S, Jensen H, Newton J. Utilizing procalcitonin in a clinical setting to help differentiate between aspiration pneumonia and aspiration pneumonitis. Diagn Microbiol Infect Dis. 2023;105:115821. https://doi.org/10.1016/j.diagmicrobio.2022.115821.

    Article  PubMed  Google Scholar 

  4. Dragan V, Wei Y, Elligsen M, Kiss A, Walker SAN, Leis JA. Prophylactic antimicrobial therapy for acute aspiration pneumonitis. Clin Infect Dis. 2018;67:513–8. https://doi.org/10.1093/cid/ciy120.

    Article  CAS  PubMed  Google Scholar 

  5. Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, Napolitano LM, O’Grady NP, Bartlett JG, Carratalà J, El Solh AA, Ewig S, Fey PD, File TM, Restrepo MI, Roberts JA, Waterer GW, Cruse P, Knight SL, Brozek JL. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63:e61–e111. https://doi.org/10.1093/cid/ciw353.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vaughn VM, Flanders SA, Snyder A, Conlon A, Rogers MAM, Malani AN, McLaughlin E, Bloemers S, Srinivasan A, Nagel J, Kaatz S, Osterholzer D, Thyagarajan R, Hsaiky L, Chopra V, Gandhi TN. Excess antibiotic treatment duration and adverse events in patients hospitalized with pneumonia: a multihospital cohort study. Ann Intern Med. 2019;171:153–63. https://doi.org/10.7326/M18-3640.

    Article  PubMed  Google Scholar 

  7. Marik PE, Careau P. The role of anaerobes in patients with ventilator-associated pneumonia and aspiration pneumonia: a prospective study. Chest. 1999;115:178–83. https://doi.org/10.1378/chest.115.1.178.

    Article  CAS  PubMed  Google Scholar 

  8. Bartlett JG. How important are anaerobic bacteria in aspiration pneumonia: when should they be treated and what is optimal therapy. Infect Dis Clin N Am. 2013;27:149–55. https://doi.org/10.1016/j.idc.2012.11.016.

    Article  Google Scholar 

  9. Yoshimatsu Y, Aga M, Komiya K, Haranaga S, Numata Y, Miki M, Higa F, Senda K, Teramoto S. The clinical significance of anaerobic coverage in the antibiotic treatment of aspiration pneumonia: a systematic review and meta-analysis. J Clin Med. 2023;12:1992. https://doi.org/10.3390/jcm12051992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perlino CA. Metronidazole vs clindamycin treatment of anerobic pulmonary infection. Failure of metronidazole therapy. Arch Intern Med. 1981;141:1424–7.

    Article  CAS  PubMed  Google Scholar 

  11. Kadowaki M, Demura Y, Mizuno S, Uesaka D, Ameshima S, Miyamori I, Ishizaki T. Reappraisal of clindamycin IV monotherapy for treatment of mild-to-moderate aspiration pneumonia in elderly patients. Chest. 2005;127:1276–82. https://doi.org/10.1378/chest.127.4.1276.

    Article  CAS  PubMed  Google Scholar 

  12. Mandell LA, Niederman MS. Aspiration pneumonia. N Engl J Med. 2019;380:651–63. https://doi.org/10.1056/NEJMra1714562.

    Article  CAS  PubMed  Google Scholar 

  13. Darwazeh AM-G, Hammad MM, Al-Jamaei AA. The relationship between oral hygiene and oral colonization with Candida species in healthy adult subjects*. Int J Dent Hyg. 2010;8:128–33. https://doi.org/10.1111/j.1601-5037.2009.00407.x.

    Article  PubMed  Google Scholar 

  14. Meersseman W, Lagrou K, Spriet I, Maertens J, Verbeken E, Peetermans WE, Van Wijngaerden E. Significance of the isolation of Candida species from airway samples in critically ill patients: a prospective, autopsy study. Intensive Care Med. 2009;35:1526–31. https://doi.org/10.1007/s00134-009-1482-8.

    Article  CAS  PubMed  Google Scholar 

  15. Wood GC, Mueller EW, Croce MA, Boucher BA, Fabian TC. Candida sp. isolated from bronchoalveolar lavage: clinical significance in critically ill trauma patients. Intensive Care Med. 2006;32:599–603. https://doi.org/10.1007/s00134-005-0065-6.

    Article  PubMed  Google Scholar 

  16. Ricard J-D, Roux D. Candida colonization in ventilated ICU patients: no longer a bystander! Intensive Care Med. 2012;38:1243–5. https://doi.org/10.1007/s00134-012-2587-z.

    Article  PubMed  Google Scholar 

  17. Timsit J-F, Schwebel C, Styfalova L, Cornet M, Poirier P, Forrestier C, Ruckly S, Jacob M-C, Souweine B. Impact of bronchial colonization with Candida spp. on the risk of bacterial ventilator-associated pneumonia in the ICU: the FUNGIBACT prospective cohort study. Intensive Care Med. 2019;45:834–43. https://doi.org/10.1007/s00134-019-05622-0.

    Article  PubMed  Google Scholar 

  18. Ong DSY, Klein Klouwenberg PMC, Spitoni C, Bonten MJM, Cremer OL. Nebulised amphotericin B to eradicate Candida colonisation from the respiratory tract in critically ill patients receiving selective digestive decontamination: a cohort study. Crit Care. 2013;17:R233. https://doi.org/10.1186/cc13056.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang D, Qi M, Hu Y, Yu M, Liang Z. The impact of Candida spp airway colonization on clinical outcomes in patients with ventilator-associated pneumonia: a systematic review and meta-analysis. Am J Infect Control. 2020;48:695–701. https://doi.org/10.1016/j.ajic.2019.11.002.

    Article  PubMed  Google Scholar 

  20. Ko SC, Chen KY, Hsueh PR, Luh KT, Yang PC. Fungal empyema thoracis: an emerging clinical entity. Chest. 2000;117:1672–8. https://doi.org/10.1378/chest.117.6.1672.

    Article  CAS  PubMed  Google Scholar 

  21. Kennedy CC, Razonable RR. Fungal infections after lung transplantation. Clin Chest Med. 2017;38:511–20. https://doi.org/10.1016/j.ccm.2017.04.011.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, Cooley LA, Dean NC, Fine MJ, Flanders SA, Griffin MR, Metersky ML, Musher DM, Restrepo MI, Whitney CG. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019;200:e45–67. https://doi.org/10.1164/rccm.201908-1581ST.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brusse-Keizer MGJ, Grotenhuis AJ, Kerstjens HM, Telgen MC, van der Palen J, MGR H, van der Valk PDLPM. Relation of sputum colour to bacterial load in acute exacerbations of COPD. Respir Med. 2009;103:601–6. https://doi.org/10.1016/j.rmed.2008.10.012.

    Article  CAS  PubMed  Google Scholar 

  24. Miravitlles M, Kruesmann F, Haverstock D, Perroncel R, Choudhri SH, Arvis P. Sputum colour and bacteria in chronic bronchitis exacerbations: a pooled analysis. Eur Respir J. 2012;39:1354–60. https://doi.org/10.1183/09031936.00042111.

    Article  PubMed  Google Scholar 

  25. Bartosh NS, Reddy S. A 47-year-old man with progressive shortness of breath and exercise intolerance. Am J Med Sci. 2012;344:407–12. https://doi.org/10.1097/MAJ.0b013e31825176ac.

    Article  PubMed  Google Scholar 

  26. Johnson AL, Hampson DF, Hampson NB. Sputum color: potential implications for clinical practice. Respir Care. 2008;53:450–4.

    PubMed  Google Scholar 

  27. Sopena N, Sabrià-Leal M, Pedro-Botet ML, Padilla E, Dominguez J, Morera J, Tudela P. Comparative study of the clinical presentation of legionella pneumonia and other community-acquired pneumonias. Chest. 1998;113:1195–200. https://doi.org/10.1378/chest.113.5.1195.

    Article  CAS  PubMed  Google Scholar 

  28. Viasus D, Gaia V, Manzur-Barbur C, Carratalà J. Legionnaires’ disease: update on diagnosis and treatment. Infect Dis Ther. 2022;11:973–86. https://doi.org/10.1007/s40121-022-00635-7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shimada T, Noguchi Y, Jackson JL, Miyashita J, Hayashino Y, Kamiya T, Yamazaki S, Matsumura T, Fukuhara S. Systematic review and metaanalysis: urinary antigen tests for Legionellosis. Chest. 2009;136:1576–85. https://doi.org/10.1378/chest.08-2602.

    Article  PubMed  Google Scholar 

  30. Jasper AS, Musuuza JS, Tischendorf JS, Stevens VW, Gamage SD, Osman F, Safdar N. Are fluoroquinolones or macrolides better for treating legionella pneumonia? A systematic review and meta-analysis. Clin Infect Dis. 2021;72:1979–89. https://doi.org/10.1093/cid/ciaa441.

    Article  CAS  PubMed  Google Scholar 

  31. Liu L, Wang Y, Sun J, Wang W, Hou J, Wang X. Case report: clinical and immunological features of a Chinese cohort with mycoplasma-induced rash and mucositis. Front Pediatr. 2020;8:402. https://doi.org/10.3389/fped.2020.00402.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Alcántara-Reifs CM, García-Nieto AV. Mycoplasma pneumoniae-associated mucositis. CMAJ. 2016;188:753. https://doi.org/10.1503/cmaj.151017.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Canavan TN, Mathes EF, Frieden I, Shinkai K. Mycoplasma pneumoniae-induced rash and mucositis as a syndrome distinct from Stevens-Johnson syndrome and erythema multiforme: a systematic review. J Am Acad Dermatol. 2015;72:239–45. https://doi.org/10.1016/j.jaad.2014.06.026.

    Article  PubMed  Google Scholar 

  34. Shah PR, Williams AM, Pihlblad MS, Nischal KK. Ophthalmic manifestations of mycoplasma-induced rash and mucositis. Cornea. 2019;38:1305–8. https://doi.org/10.1097/ICO.0000000000001985.

    Article  PubMed  Google Scholar 

  35. Khandaker MH, Espinosa RE, Nishimura RA, Sinak LJ, Hayes SN, Melduni RM, Oh JK. Pericardial disease: diagnosis and management. Mayo Clin Proc. 2010;85:572–93. https://doi.org/10.4065/mcp.2010.0046.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gouriet F, Levy P-Y, Casalta J-P, Zandotti C, Collart F, Lepidi H, Cautela J, Bonnet JL, Thuny F, Habib G, Raoult D. Etiology of pericarditis in a prospective cohort of 1162 cases. Am J Med. 2015;128:784.e1–8. https://doi.org/10.1016/j.amjmed.2015.01.040.

    Article  PubMed  Google Scholar 

  37. Theetha Kariyanna P, Sabih A, Sutarjono B, Shah K, Vargas Peláez A, Lewis J, Yu R, Grewal ES, Jayarangaiah A, Das S, Jayarangaiah A. A systematic review of COVID-19 and pericarditis. Cureus. 2022;14:e27948. https://doi.org/10.7759/cureus.27948.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fatima M, Ahmad Cheema H, Ahmed Khan MH, Shahid H, Saad Ali M, Hassan U, Wahaj Murad M, Aemaz Ur Rehman M, Farooq H. Development of myocarditis and pericarditis after COVID-19 vaccination in adult population: a systematic review. Ann Med Surg (Lond). 2022;76:103486. https://doi.org/10.1016/j.amsu.2022.103486.

    Article  PubMed  Google Scholar 

  39. Vijay A, Stendahl JC, Rosenfeld LE. Mycoplasma pneumoniae pericarditis. Am J Cardiol. 2019;123:1383–4. https://doi.org/10.1016/j.amjcard.2019.01.014.

    Article  PubMed  Google Scholar 

  40. Farraj RS, McCully RB, Oh JK, Smith TF. Mycoplasma-associated pericarditis. Mayo Clin Proc. 1997;72:33–6. https://doi.org/10.4065/72.1.33.

    Article  CAS  PubMed  Google Scholar 

  41. Uppal P, LaPlante KL, Gaitanis MM, Jankowich MD, Ward KE. Daptomycin-induced eosinophilic pneumonia—a systematic review. Antimicrob Resist Infect Control. 2016;5:55. https://doi.org/10.1186/s13756-016-0158-8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Soldevila-Boixader L, Villanueva B, Ulldemolins M, Benavent E, Padulles A, Ribera A, Borras I, Ariza J, Murillo O. Risk factors of daptomycin-induced eosinophilic pneumonia in a population with osteoarticular infection. Antibiotics (Basel). 2021;10:446. https://doi.org/10.3390/antibiotics10040446.

    Article  CAS  PubMed  Google Scholar 

  43. De Giacomi F, Vassallo R, Yi ES, Ryu JH. Acute eosinophilic pneumonia. causes, diagnosis, and management. Am J Respir Crit Care Med. 2018;197:728–36. https://doi.org/10.1164/rccm.201710-1967CI.

    Article  PubMed  Google Scholar 

  44. Wen A, Fegan M, Hayward C, Chakraborty S, Sly LI. Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. Nov., comb. nov. Int J Syst Bacteriol. 1999;49(Pt 2):567–76. https://doi.org/10.1099/00207713-49-2-567.

    Article  CAS  PubMed  Google Scholar 

  45. Kwok R. How bacteria could help recycle electronic waste. Proc Natl Acad Sci. 2019;116:711–3. https://doi.org/10.1073/pnas.1820329116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bilgin H, Sarmis A, Tigen E, Soyletir G, Mulazimoglu L. Delftia acidovorans: a rare pathogen in immunocompetent and immunocompromised patients. Can J Infect Dis Med Microbiol. 2015;26:277–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Khan S, Sistla S, Dhodapkar R, Parija SC. Fatal Delftia acidovorans infection in an immunocompetent patient with empyema. Asian Pac J Trop Biomed. 2012;2:923–4. https://doi.org/10.1016/S2221-1691(12)60254-8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kawamura I, Yagi T, Hatakeyama K, Ohkura T, Ohkusu K, Takahashi Y, Kojima S, Hasegawa Y. Recurrent vascular catheter-related bacteremia caused by Delftia acidovorans with different antimicrobial susceptibility profiles. J Infect Chemother. 2011;17:111–3. https://doi.org/10.1007/s10156-010-0089-x.

    Article  PubMed  Google Scholar 

  49. Patel D, Iqbal AM, Mubarik A, Vassa N, Godil R, Saad M, Muddassir S. Delftia acidovorans: a rare cause of septic pulmonary embolism from catheter-related infection: case report and literature review. Respir Med Case Rep. 2019;27:100835. https://doi.org/10.1016/j.rmcr.2019.100835.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Martinez FJ, Yow E, Flaherty KR, Snyder LD, Durheim MT, Wisniewski SR, Sciurba FC, Raghu G, Brooks MM, Kim D-Y, Dilling DF, Criner GJ, Kim H, Belloli EA, Nambiar AM, Scholand MB, Anstrom KJ, Noth I, CleanUP-IPF Investigators of the Pulmonary Trials Cooperative. Effect of antimicrobial therapy on respiratory hospitalization or death in adults with idiopathic pulmonary fibrosis: the CleanUP-IPF randomized clinical trial. JAMA. 2021;325:1841–51. https://doi.org/10.1001/jama.2021.4956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ramsey BW, Pepe MS, Quan JM, Otto KL, Montgomery AB, Williams-Warren J, Vasiljev-K M, Borowitz D, Bowman CM, Marshall BC, Marshall S, Smith AL. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N Engl J Med. 1999;340:23–30. https://doi.org/10.1056/NEJM199901073400104.

    Article  CAS  PubMed  Google Scholar 

  52. Orriols R, Hernando R, Ferrer A, Terradas S, Montoro B. Eradication therapy against Pseudomonas aeruginosa in non-cystic fibrosis bronchiectasis. Respiration. 2015;90:299–305. https://doi.org/10.1159/000438490.

    Article  CAS  PubMed  Google Scholar 

  53. Drobnic ME, Suñé P, Montoro JB, Ferrer A, Orriols R. Inhaled tobramycin in non-cystic fibrosis patients with bronchiectasis and chronic bronchial infection with Pseudomonas aeruginosa. Ann Pharmacother. 2005;39:39–44. https://doi.org/10.1345/aph.1E099.

    Article  CAS  PubMed  Google Scholar 

  54. Barker AF, Couch L, Fiel SB, Gotfried MH, Ilowite J, Meyer KC, O’Donnell A, Sahn SA, Smith LJ, Stewart JO, Abuan T, Tully H, Van Dalfsen J, Wells CD, Quan J. Tobramycin solution for inhalation reduces sputum Pseudomonas aeruginosa density in bronchiectasis. Am J Respir Crit Care Med. 2000;162:481–5. https://doi.org/10.1164/ajrccm.162.2.9910086.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Tatara .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tatara, A.M. (2023). Pulmonary Infection. In: The Infectious Diseases Consult Handbook. Springer, Cham. https://doi.org/10.1007/978-3-031-39474-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39474-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39473-7

  • Online ISBN: 978-3-031-39474-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics