Skip to main content

Blood Pressure Variability and Heart Failure: Pathophysiological and Clinical Aspects

  • Chapter
  • First Online:
Hypertension and Heart Failure

Abstract

The role of blood pressure variability (BPV) in relation to heart failure (HF) has been supported by some studies in which increasing values of BPV have been associated with a higher frequency of cardiac organ damage and with an increased incidence of HF. In patients already affected by HF, BPV has been associated with an increased risk of cardiovascular events and complications and with a higher incidence of HF hospitalizations. However, the predictive value of BPV in HF patients may depend on the HF phenotype. In its first part, the present chapter will address the role of BPV in promoting cardiac organ damage and development of HF, also discussing potential pathophysiological mechanisms for this association. The second part will address the clinical relevance of BPV in HF patients according to their clinical phenotype. Among other issues we will also deal with the paradoxical relationship reported between BPV and HF with reduced ejection fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parati G, Ochoa JE, Salvi P, Lombardi C, Bilo G. Prognostic value of blood pressure variability and average blood pressure levels in patients with hypertension and diabetes. Diabetes Care. 2013;36(Suppl 2):S312–24.

    Article  Google Scholar 

  2. Parati G, Ochoa JE, Lombardi C, Bilo G. Assessment and management of blood-pressure variability. Nat Rev Cardiol. 2013;10(3):143–55.

    Article  Google Scholar 

  3. Ernst ME, Chowdhury EK, Beilin LJ, Margolis KL, Nelson MR, Wolfe R, et al. Long-term blood pressure variability and risk of cardiovascular disease events among community-dwelling elderly. Hypertension. 2020;76(6):1945–52.

    Article  CAS  Google Scholar 

  4. Cuspidi C, Sala C, Tadic M, Gherbesi E, De Giorgi A, Grassi G, et al. Clinical and prognostic significance of a reverse dipping pattern on ambulatory monitoring: an updated review. J Clin Hypertens (Greenwich). 2017;19(7):713–21.

    Article  Google Scholar 

  5. Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens. 1987;5(1):93–8.

    Article  CAS  Google Scholar 

  6. Frattola A, Parati G, Cuspidi C, Albini F, Mancia G. Prognostic value of 24-hour blood pressure variability. J Hypertens. 1993;11(10):1133–7.

    Article  CAS  Google Scholar 

  7. Tatasciore A, Renda G, Zimarino M, Soccio M, Bilo G, Parati G, et al. Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension. 2007;50(2):325–32.

    Article  CAS  Google Scholar 

  8. Madden JM, O'Flynn AM, Fitzgerald AP, Kearney PM. Correlation between short-term blood pressure variability and left-ventricular mass index: a meta-analysis. Hypertens Res. 2016;39(3):171–7.

    Article  Google Scholar 

  9. Garcia-Ortiz L, Gomez-Marcos MA, Martin-Moreiras J, Gonzalez-Elena LJ, Recio-Rodriguez JI, Castano-Sanchez Y, et al. Pulse pressure and nocturnal fall in blood pressure are predictors of vascular, cardiac and renal target organ damage in hypertensive patients (LOD-RISK study). Blood Press Monit. 2009;14(4):145–51.

    Article  Google Scholar 

  10. Cha RH, Kim S, Ae Yoon S, Ryu DR, Eun OJ, Han SY, et al. Association between blood pressure and target organ damage in patients with chronic kidney disease and hypertension: results of the APrODiTe study. Hypertens Res. 2014;37(2):172–8.

    Article  Google Scholar 

  11. Ivanovic BA, Tadic MV, Celic VP. To dip or not to dip? The unique relationship between different blood pressure patterns and cardiac function and structure. J Hum Hypertens. 2013;27(1):62–70.

    Article  CAS  Google Scholar 

  12. Komori T, Eguchi K, Saito T, Nishimura Y, Hoshide S, Kario K. Riser blood pressure pattern is associated with mild cognitive impairment in heart failure patients. Am J Hypertens. 2016;29(2):194–201.

    Article  CAS  Google Scholar 

  13. Wang C, Zhang J, Liu X, Li C, Ye Z, Peng H, et al. Reversed dipper blood-pressure pattern is closely related to severe renal and cardiovascular damage in patients with chronic kidney disease. PLoS One. 2013;8(2):e55419.

    Article  CAS  Google Scholar 

  14. Pogue V, Rahman M, Lipkowitz M, Toto R, Miller E, Faulkner M, et al. Disparate estimates of hypertension control from ambulatory and clinic blood pressure measurements in hypertensive kidney disease. Hypertension. 2009;53(1):20–7.

    Article  CAS  Google Scholar 

  15. Liu Z, Zhao Y, Lu F, Zhang H, Diao Y. Day-by-day variability in self-measured blood pressure at home: effects on carotid artery atherosclerosis, brachial flow-mediated dilation, and endothelin-1 in normotensive and mild-moderate hypertensive individuals. Blood Press Monit. 2013;18(6):316–25.

    Article  Google Scholar 

  16. Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Heart Fail Clin. 2008;4(1):23–36.

    Article  Google Scholar 

  17. Borlaug BA. The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2014;11(9):507–15.

    Article  CAS  Google Scholar 

  18. Pfeffer MA, Shah AM, Borlaug BA. Heart failure with preserved ejection fraction in perspective. Circ Res. 2019;124(11):1598–617.

    Article  CAS  Google Scholar 

  19. Komori T, Eguchi K, Saito T, Hoshide S, Kario K. Riser pattern: another determinant of heart failure with preserved ejection fraction. J Clin Hypertens (Greenwich). 2016;18(10):994–9.

    Article  Google Scholar 

  20. Kokubo A, Kuwabara M, Ota Y, Tomitani N, Yamashita S, Shiga T, et al. Nocturnal blood pressure surge in seconds is a new determinant of left ventricular mass index. J Clin Hypertens (Greenwich). 2022;24(3):271–82.

    Article  CAS  Google Scholar 

  21. Matsui Y, Ishikawa J, Eguchi K, Shibasaki S, Shimada K, Kario K. Maximum value of home blood pressure: a novel indicator of target organ damage in hypertension. Hypertension. 2011;57(6):1087–93.

    Article  CAS  Google Scholar 

  22. Veloudi P, Blizzard CL, Head GA, Abhayaratna WP, Stowasser M, Sharman JE. Blood pressure variability and prediction of target organ damage in patients with uncomplicated hypertension. Am J Hypertens. 2016;29(9):1046–54.

    Article  Google Scholar 

  23. Wei FF, Li Y, Zhang L, Xu TY, Ding FH, Wang JG, et al. Beat-to-beat, reading-to-reading, and day-to-day blood pressure variability in relation to organ damage in untreated Chinese. Hypertension. 2014;63(4):790–6.

    Article  CAS  Google Scholar 

  24. Stergiou GS, Ntineri A, Kollias A, Ohkubo T, Imai Y, Parati G. Blood pressure variability assessed by home measurements: a systematic review. Hypertens Res. 2014;37(6):565–72.

    Article  Google Scholar 

  25. Shibasaki S, Hoshide S, Eguchi K, Ishikawa J, Kario K, Japan Morning Surge-Home Blood Pressure Study G. Increase trend in home blood pressure on a single occasion is associated with B-type natriuretic peptide and the estimated glomerular filtration rate. Am J Hypertens. 2015;28(9):1098–105.

    Article  CAS  Google Scholar 

  26. Ushigome E, Fukui M, Hamaguchi M, Tanaka T, Atsuta H, Mogami S, et al. Maximum home systolic blood pressure is a useful indicator of arterial stiffness in patients with type 2 diabetes mellitus: post hoc analysis of a cross-sectional multicenter study. Diabetes Res Clin Pract. 2014;105(3):344–51.

    Article  Google Scholar 

  27. Matsui Y, O'Rourke MF, Hoshide S, Ishikawa J, Shimada K, Kario K. Combined effect of angiotensin II receptor blocker and either a calcium channel blocker or diuretic on day-by-day variability of home blood pressure: the Japan combined treatment with Olmesartan and a Calcium-Channel blocker versus Olmesartan and diuretics randomized efficacy study. Hypertension. 2012;59(6):1132–8.

    Article  CAS  Google Scholar 

  28. Ushigome E, Fukui M, Hamaguchi M, Senmaru T, Sakabe K, Tanaka M, et al. The coefficient variation of home blood pressure is a novel factor associated with macroalbuminuria in type 2 diabetes mellitus. Hypertens Res. 2011;34(12):1271–5.

    Article  CAS  Google Scholar 

  29. Masugata H, Senda S, Murao K, Inukai M, Hosomi N, Iwado Y, et al. Visit-to-visit variability in blood pressure over a 1-year period is a marker of left ventricular diastolic dysfunction in treated hypertensive patients. Hypertens Res. 2011;34(7):846–50.

    Article  Google Scholar 

  30. Okada R, Okada A, Okada T, Nanasato M, Wakai K. Visit-to-visit blood pressure variability is a marker of cardiac diastolic function and carotid atherosclerosis. BMC Cardiovasc Disord. 2014;14:188.

    Article  Google Scholar 

  31. Redfield MM. Heart failure with preserved ejection fraction. N Engl J Med. 2016;375(19):1868–77.

    Article  Google Scholar 

  32. Rothwell PM, Howard SC, Dolan E, O'Brien E, Dobson JE, Dahlof B, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375(9718):895–905.

    Article  Google Scholar 

  33. Mancia G, Schumacher H, Bohm M, Redon J, Schmieder RE, Verdecchia P, et al. Relative and combined prognostic importance of on-treatment mean and visit-to-visit blood pressure variability in ONTARGET and TRANSCEND patients. Hypertension. 2017;70(5):938–48.

    Article  CAS  Google Scholar 

  34. Mehlum MH, Liestol K, Kjeldsen SE, Julius S, Hua TA, Rothwell PM, et al. Blood pressure variability and risk of cardiovascular events and death in patients with hypertension and different baseline risks. Eur Heart J. 2018;39:2243.

    Article  CAS  Google Scholar 

  35. Poortvliet RK, Ford I, Lloyd SM, Sattar N, Mooijaart SP, de Craen AJ, et al. Blood pressure variability and cardiovascular risk in the PROspective study of pravastatin in the elderly at risk (PROSPER). PLoS One. 2012;7(12):e52438.

    Article  CAS  Google Scholar 

  36. Suchy-Dicey AM, Wallace ER, Mitchell SV, Aguilar M, Gottesman RF, Rice K, et al. Blood pressure variability and the risk of all-cause mortality, incident myocardial infarction, and incident stroke in the cardiovascular health study. Am J Hypertens. 2013;26(10):1210–7.

    Article  Google Scholar 

  37. Wu C, Shlipak MG, Stawski RS, Peralta CA, Psaty BM, Harris TB, et al. Visit-to-visit blood pressure variability and mortality and cardiovascular outcomes among older adults: the health, aging, and body composition study. Am J Hypertens. 2017;30(2):151–8.

    Article  CAS  Google Scholar 

  38. Muntner P, Whittle J, Lynch AI, Colantonio LD, Simpson LM, Einhorn PT, et al. Visit-to-visit variability of blood pressure and coronary heart disease, stroke, heart failure, and mortality: a cohort study. Ann Intern Med. 2015;163(5):329–38.

    Article  Google Scholar 

  39. Chang TI, Reboussin DM, Chertow GM, Cheung AK, Cushman WC, Kostis WJ, et al. Visit-to-visit office blood pressure variability and cardiovascular outcomes in SPRINT (systolic blood pressure intervention trial). Hypertension. 2017;70(4):751–8.

    Article  CAS  Google Scholar 

  40. Velagaleti RS, Pencina MJ, Murabito JM, Wang TJ, Parikh NI, D'Agostino RB, et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation. 2008;118(20):2057–62.

    Article  Google Scholar 

  41. Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J, Liang CS, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the studies of left ventricular dysfunction (SOLVD). Circulation. 1990;82(5):1724–9.

    Article  CAS  Google Scholar 

  42. Jorsal A, Wiggers H, McMurray JJV. Heart failure: epidemiology, pathophysiology, and management of heart failure in diabetes mellitus. Endocrinol Metab Clin North Am. 2018;47(1):117–35.

    Article  Google Scholar 

  43. Nuyujukian DS, Koska J, Bahn G, Reaven PD, Zhou JJ, Investigators V. Blood pressure variability and risk of heart failure in ACCORD and the VADT. Diabetes Care. 2020;43(7):1471–8.

    Article  CAS  Google Scholar 

  44. Kaze AD, Santhanam P, Erqou S, Bertoni AG, Ahima RS, Echouffo-Tcheugui JB. Long-term variability of blood pressure and incidence of heart failure among individuals with type 2 diabetes. ESC Heart Fail. 2021;8(4):2959–67.

    Article  Google Scholar 

  45. Haring B, Hunt RP, Manson JE, LaMonte MJ, Klein L, Allison MA, et al. Blood pressure variability and heart failure hospitalization: results from the Women’s Health Initiative. Am J Prev Med. 2022;63(3):410–8.

    Article  Google Scholar 

  46. Shimbo D, Newman JD, Aragaki AK, LaMonte MJ, Bavry AA, Allison M, et al. Association between annual visit-to-visit blood pressure variability and stroke in postmenopausal women: data from the Women's Health Initiative. Hypertension. 2012;60(3):625–30.

    Article  CAS  Google Scholar 

  47. Gibelin P, Spillner E, Bonnan S, Chevallier T. Non-invasive blood pressure variability in chronic heart failure: characteristics and prognostic value. Arch Mal Coeur Vaiss. 2003;96(10):955–62.

    CAS  Google Scholar 

  48. Clement DL, De Buyzere ML, De Bacquer DA, de Leeuw PW, Duprez DA, Fagard RH, et al. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med. 2003;348(24):2407–15.

    Article  Google Scholar 

  49. Rothwell PM. Limitations of the usual blood-pressure hypothesis and importance of variability, instability, and episodic hypertension. Lancet. 2010;375(9718):938–48.

    Article  Google Scholar 

  50. Berry M, Lairez O, Fourcade J, Roncalli J, Carrie D, Pathak A, et al. Prognostic value of systolic short-term blood pressure variability in systolic heart failure. Clin Hypertens. 2016;22:16.

    Article  Google Scholar 

  51. Shin J, Kline S, Moore M, Gong Y, Bhanderi V, Schmalfuss CM, et al. Association of diurnal blood pressure pattern with risk of hospitalization or death in men with heart failure. J Card Fail. 2007;13(8):656–62.

    Article  Google Scholar 

  52. Komori T, Eguchi K, Saito T, Hoshide S, Kario K. Riser pattern is a novel predictor of adverse events in heart failure patients with preserved ejection fraction. Circ J. 2017;81(2):220–6.

    Article  CAS  Google Scholar 

  53. Zhang Q, Zhou B, Ma Y, Hu Y, Li X, Cong H. Blood pressure visit-to-visit variability and outcomes in patients with heart failure with preserved ejection fraction. ESC Heart Fail. 2021;8(5):3984–96.

    Article  Google Scholar 

  54. Monzo L, Ferreira JP, Abreu P, Szumski A, Bohm M, McMurray JJV, et al. Visit-to-visit blood pressure variation and outcomes in heart failure with reduced ejection fraction: findings from the Eplerenone in patients with systolic heart failure and mild symptoms trial. J Hypertens. 2020;38(3):420–5.

    Article  CAS  Google Scholar 

  55. Bohm M, Robertson M, Borer J, Ford I, Komajda M, Mahfoud F, et al. Effect of visit-to-visit variation of heart rate and systolic blood pressure on outcomes in chronic systolic heart failure: results from the systolic heart failure treatment with the If Inhibitor Ivabradine Trial (SHIFT) Trial. J Am Heart Assoc. 2016;5(2):e002160.

    Article  Google Scholar 

  56. Kalantar-Zadeh K, Block G, Horwich T, Fonarow GC. Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. J Am Coll Cardiol. 2004;43(8):1439–44.

    Article  Google Scholar 

  57. Davos CH, Doehner W, Rauchhaus M, Cicoira M, Francis DP, Coats AJ, et al. Body mass and survival in patients with chronic heart failure without cachexia: the importance of obesity. J Card Fail. 2003;9(1):29–35.

    Article  Google Scholar 

  58. Canesin MF, Giorgi D, Oliveira MT Jr, Wajngarten M, Mansur AJ, Ramires JA, et al. Ambulatory blood pressure monitoring of patients with heart failure. A new prognosis marker. Arq Bras Cardiol. 2002;78(1):83–9.

    Article  Google Scholar 

  59. Chen AF. Blood pressure variability reduction and organ protection in hypertension treatment. Hypertens Res. 2008;31(4):587–8.

    Article  Google Scholar 

  60. Kudo H, Kai H, Kajimoto H, Koga M, Takayama N, Mori T, et al. Exaggerated blood pressure variability superimposed on hypertension aggravates cardiac remodeling in rats via angiotensin II system-mediated chronic inflammation. Hypertension. 2009;54(4):832–8.

    Article  CAS  Google Scholar 

  61. Diaz KM, Veerabhadrappa P, Kashem MA, Thakkar SR, Feairheller DL, Sturgeon KM, et al. Visit-to-visit and 24-h blood pressure variability: association with endothelial and smooth muscle function in African Americans. J Hum Hypertens. 2013;27(11):671–7.

    Article  CAS  Google Scholar 

  62. Diaz KM, Veerabhadrappa P, Kashem MA, Feairheller DL, Sturgeon KM, Williamson ST, et al. Relationship of visit-to-visit and ambulatory blood pressure variability to vascular function in African Americans. Hypertens Res. 2012;35(1):55–61.

    Article  CAS  Google Scholar 

  63. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus—mechanisms, management, and clinical considerations. Circulation. 2016;133(24):2459–502.

    Article  CAS  Google Scholar 

  64. Seddon M, Looi YH, Shah AM. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart. 2007;93(8):903–7.

    Article  CAS  Google Scholar 

  65. Lee HT, Lim YH, Kim BK, Lee KW, Lee JU, Kim KS, et al. The relationship between ambulatory arterial stiffness index and blood pressure variability in hypertensive patients. Korean Circ J. 2011;41(5):235–40.

    Article  Google Scholar 

  66. Shimbo D, Shea S, McClelland RL, Viera AJ, Mann D, Newman J, et al. Associations of aortic distensibility and arterial elasticity with long-term visit-to-visit blood pressure variability: the multi-ethnic study of atherosclerosis (MESA). Am J Hypertens. 2013;26(7):896–902.

    Article  CAS  Google Scholar 

  67. Mancia G. Visit-to-visit blood pressure variability: an insight into the mechanisms. Hypertension. 2016;68(1):32–3.

    Article  CAS  Google Scholar 

  68. Radaelli A, Perlangeli S, Cerutti MC, Mircoli L, Mori I, Boselli L, et al. Altered blood pressure variability in patients with congestive heart failure. J Hypertens. 1999;17(12 Pt 2):1905–10.

    Article  CAS  Google Scholar 

  69. Grassi G, Bombelli M, Seravalle G, Dell'Oro R, Quarti-Trevano F. Diurnal blood pressure variation and sympathetic activity. Hypertens Res. 2010;33(5):381–5.

    Article  Google Scholar 

  70. Lanfranchi PA, Somers VK. Arterial baroreflex function and cardiovascular variability: interactions and implications. Am J Physiol Regul Integr Comp Physiol. 2002;283(4):R815–26.

    Article  Google Scholar 

  71. Giles TD, Roffidal L, Quiroz A, Sander G, Tresznewsky O. Circadian variation in blood pressure and heart rate in nonhypertensive congestive heart failure. J Cardiovasc Pharmacol. 1996;28(6):733–40.

    Article  CAS  Google Scholar 

  72. Rothwell PM, Howard SC, Dolan E, O'Brien E, Dobson JE, Dahlof B, et al. Effects of beta blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol. 2010;9(5):469–80.

    Article  CAS  Google Scholar 

  73. Muntner P, Levitan EB, Lynch AI, Simpson LM, Whittle J, Davis BR, et al. Effect of chlorthalidone, amlodipine, and lisinopril on visit-to-visit variability of blood pressure: results from the antihypertensive and lipid-lowering treatment to prevent heart attack trial. J Clin Hypertens (Greenwich). 2014;16(5):323–30.

    Article  CAS  Google Scholar 

  74. Kario K, Schwartz JE, Pickering TG. Changes of nocturnal blood pressure dipping status in hypertensives by nighttime dosing of alpha-adrenergic blocker, doxazosin: results from the HALT study. Hypertension. 2000;35(3):787–94.

    Article  CAS  Google Scholar 

  75. Hermida RC, Calvo C, Ayala DE, Fernandez JR, Covelo M, Mojon A, et al. Treatment of non-dipper hypertension with bedtime administration of valsartan. J Hypertens. 2005;23(10):1913–22.

    Article  CAS  Google Scholar 

  76. Kario K, Nariyama J, Kido H, Ando S, Takiuchi S, Eguchi K, et al. Effect of a novel calcium channel blocker on abnormal nocturnal blood pressure in hypertensive patients. J Clin Hypertens (Greenwich). 2013;15(7):465–72.

    Article  CAS  Google Scholar 

  77. Gosse P, Schumacher H. Effect of telmisartan vs. ramipril on 'dipping' status and blood pressure variability: pooled analysis of the PRISMA studies. Hypertens Res. 2014;37(2):151–7.

    Article  CAS  Google Scholar 

  78. Hermida RC, Ayala DE, Mojon A, Fernandez JR. Influence of circadian time of hypertension treatment on cardiovascular risk: results of the MAPEC study. Chronobiol Int. 2010;27(8):1629–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Parati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parati, G., Ochoa, J.E. (2023). Blood Pressure Variability and Heart Failure: Pathophysiological and Clinical Aspects. In: Dorobantu, M., Voicu, V., Grassi, G., Agabiti-Rosei, E., Mancia, G. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-39315-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39315-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39314-3

  • Online ISBN: 978-3-031-39315-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics