Skip to main content

High Heart Rate: A Predictor of Heart Failure in Healthy Subjects and a Risk Factor for Adverse Outcome in Patients with Heart Failure

  • Chapter
  • First Online:
Hypertension and Heart Failure

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

  • 120 Accesses

Abstract

Heart failure (HF) is characterized by neurohumoral activation of the sympathetic nervous system, which is accompanied by increased heart rate (HR), myocardial contractility, and vascular tone. The compensatory increase in heart rate associated with heart failure causes increased myocardial oxygen consumption, decreased coronary blood flow, and reduced myocardial efficiency. Several randomized controlled trials (RCTs) performed with beta-blockers have provided undisputed evidence for a beneficial effect of heart rate reduction in patients with heart failure with reduced ejection fraction (HFrEF). These results led the European guidelines to recommend bisoprolol, carvedilol, metoprolol succinate CR/XL, or nebivolol as first-line drugs for the treatment of patients with heart failure. Whether beta-blockers may also be beneficial in patients with heart failure with preserved ejection fraction (HFpEF) is not well-known. Ivabradine, on top of standard beta-blocking therapy, improved prognosis in patients from the Systolic Heart Failure Treatment with the I(f) Inhibitor Ivabradine Trial (SHIFT) study. However, this effect was observed in patients with a heart rate ≥ 75 bpm but not in those with a lower heart rate. These findings emphasize the importance of identifying heart failure patients with a high heart rate because they can benefit the most from pharmacological heart rate reduction. However, it is not known whether the lower the heart rate the better the outcome, and the current guidelines do not provide specific suggestions about this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inamdar AA, Inamdar AC. Heart failure: diagnosis, management and utilization. J Clin Med. 2016;5(7):62.

    Article  Google Scholar 

  2. Chow J, Senderovich H. It's time to talk: challenges in providing integrated palliative care in advanced congestive heart failure. A narrative review. Curr Cardiol Rev. 2018;14:128–37.

    Article  Google Scholar 

  3. Hasking GJ, Esler MD, Jennings GL, et al. Norepinepherine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615–21.

    Article  CAS  Google Scholar 

  4. Kaye DM, Lefkovits J, Jennings GL, et al. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol. 1995;26:1257–63.

    Article  CAS  Google Scholar 

  5. Milo-Cotter O, Cotter-Davison B, Lombardi C, et al. Neurohormonal activation in acute heart failure: results from VERITAS. Cardiology. 2011;119:96–105.

    Article  CAS  Google Scholar 

  6. Writing Committee, Maddox TM, Januzzi JL Jr, Allen LA, et al. 2021 Update to the 2017 ACC expert consensus decision pathway for optimization of heart failure treatment: answers to 10 pivotal issues about heart failure with reduced ejection fraction: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;77:772–810.

    Article  Google Scholar 

  7. Biegus J, Niewinski P, Josiak K, et al. Pathophysiology of advanced heart failure: what knowledge is needed for clinical management? Heart Fail Clin. 2021;17:519–31.

    Article  Google Scholar 

  8. Seferovic PM, Ponikowski P, Anker SD, et al. Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21:1169–86.

    Article  Google Scholar 

  9. Hsu S, Fang JC, Borlaug BA. Hemodynamics for the heart failure clinician: a State-of-the-art review. J Card Fail. 2022;28:133–48.

    Article  Google Scholar 

  10. Omote K, Verbrugge FH, Borlaug BA. Heart failure with preserved ejection fraction: mechanisms and treatment strategies. Annu Rev Med. 2022;73:321–37.

    Article  CAS  Google Scholar 

  11. Metra M. Tachycardia after a heart failure hospitalization: another piece of the puzzle? JACC Heart Fail. 2013;1:497–9.

    Article  Google Scholar 

  12. Palatini P, Casiglia S, Julius S, et al. Heart rate, a risk factor for cardiovascular mortality in elderly men. Arch Int Med. 1999;159:585–92.

    Article  CAS  Google Scholar 

  13. Palatini P, Julius S. Review article: heart rate and the cardiovascular risk. J Hypertens. 1997;15:3–17.

    Article  CAS  Google Scholar 

  14. Palatini P, Julius S. Association of tachycardia with morbidity and mortality: patho-physiological considerations. J Hum Hypertens. 1997;11(S1):19–27.

    Google Scholar 

  15. Fox K, Borer JS, Camm AJ, et al. Resting heart rate in cardiovascular disease. J Am Coll Cardiol. 2007;50:823–30.

    Article  Google Scholar 

  16. Cook S, Togni M, Schaub MC, et al. High heart rate: a cardiovascular risk factor? Eur Heart J. 2006;27:2387–93.

    Article  Google Scholar 

  17. Aune D, Sen A, O’Hartaigh B, et al. Resting heart rate and the risk of CV disease, total cancer, and all-cause mortality - a systematic review and dose-response meta-analysis of prospective studies. Nutr Metab Cardiovasc Dis. 2017;27:504–17.

    Article  CAS  Google Scholar 

  18. Shi Y, Zhou W, Liu X, et al. Resting heart rate and the risk of hypertension and heart failure: a dose-response meta-analysis of prospective studies. J Hypertens. 2018;36:995–1004.

    Article  CAS  Google Scholar 

  19. Ho JE, Larson MG, Ghorbani A, et al. Long-term cardiovascular risks associated with an elevated heart rate: the Framingham heart study. J Am Heart Assoc. 2014;3:e000668.

    Article  Google Scholar 

  20. Opdahl A, Ambale G, Venkatesh B, et al. Resting heart rate as predictor for left ventricular dysfunction and heart failure: MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol. 2014;63:1182–9.

    Article  Google Scholar 

  21. Menotti A, Mulder I, Nissinen A, et al. Cardiovascular risk factors and 10-year all-cause mortality in elderly European male populations; the FINE study. Finland, Italy, Netherlands, elderly. Eur Heart J. 2001;22:573–9.

    Article  CAS  Google Scholar 

  22. Legeai C, Jouven X, Tafflet M, et al. Resting heart rate, mortality and future coronary heart disease in the elderly: the 3C study. Eur J Cardiovasc Prev Rehabil. 2011;18:488–97.

    Article  CAS  Google Scholar 

  23. Hartaigh BO, Allore HG, Trentalange M, et al. Elevations in time-varying resting heart rate predict subsequent all-cause mortality in older adults. Eur J Prev Cardiol. 2015;22:527–34.

    Article  Google Scholar 

  24. Saxena A, Minton D, Lee DC, et al. Protective role of resting heart rate on all-cause and cardiovascular disease mortality. Mayo Clin Proc. 2013;88:1420–6.

    Article  Google Scholar 

  25. Julius S, Palatini P, Kjeldsen S, et al. Tachycardia predicts cardiovascular events in the VALUE trial. Am J Cardiol. 2012;109:685–92.

    Article  Google Scholar 

  26. Lindgren M, Robertson J, Adiels M, et al. Resting heart rate in late adolescence and long term risk of CV disease in Swedish men. Int J Cardiol. 2018;259:109–15.

    Article  Google Scholar 

  27. Raisi-Estabragh Z, Cooper J, Judge R, et al. Age, sex and disease-specific associations between resting heart rate and cardiovascular mortality in the UK BIOBANK. PLoS One. 2020;15:e0233898.

    Article  CAS  Google Scholar 

  28. Aaronson KD, Schwartz JS, Chen TM, et al. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation. 1997;95:2660–7.

    Article  CAS  Google Scholar 

  29. Poole-Wilson PA, Uretsky BF, Thygesen K, Atlas Study Group, et al. Mode of death in heart failure: findings from the ATLAS trial. Heart. 2003;89:42–8.

    Article  CAS  Google Scholar 

  30. Lechat P, Hulot JS, Escolano S, et al. Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II trial. Circulation. 2001;103:1428–33.

    Article  CAS  Google Scholar 

  31. Metra M, Torp-Pedersen C, Swedberg K, et al. Influence of heart rate, blood pressure, and beta-blocker dose on outcome and the differences in outcome between carvedilol and metoprolol tartrate in patients with chronic heart failure: results from the COMET trial. Eur Heart J. 2005;26:2259–68.

    Article  CAS  Google Scholar 

  32. Swedberg K, Komajda M, Bohm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010;376:875–85.

    Article  CAS  Google Scholar 

  33. Greene SJ, Vaduganathan M, Wilcox JE, EVEREST Trial Investigators, et al. The prognostic significance of heart rate in patients hospitalized for heart failure with reduced ejection fraction in sinus rhythm: insights from the EVEREST (efficacy of vasopressin antagonism in heart failure: outcome study with Tolvaptan) trial. JACC Heart Fail. 2013;1:488–96.

    Article  Google Scholar 

  34. Habal MV, Liu PP, Austin PC, et al. Association of heart rate at hospital discharge with mortality and hospitalizations in patients with heart failure. Circ Heart Fail. 2014;7:12–20.

    Article  CAS  Google Scholar 

  35. Castagno D, Skali H, Takeuchi M, CHARM Investigators, et al. Association of heart rate and outcomes in a broad spectrum of patients with chronic heart failure: results from the CHARM (candesartan in heart failure: assessment of reduction in mortality and morbidity) program. J Am Coll Cardiol. 2012;59:1785–95.

    Article  Google Scholar 

  36. Bui AL, Grau-Sepulveda MV, Hernandez AF, et al. Admission heart rate and in-hospital outcomes in patients hospitalized for heart failure in sinus rhythm and in atrial fibrillation. Am Heart J. 2013;165:567–74.

    Article  Google Scholar 

  37. Lau K, Malik A, Foroutan F, et al. Resting heart rate as an important predictor of mortality and morbidity in ambulatory patients with heart failure: a systematic review and meta-analysis. J Card Fail. 2021;27:349–63.

    Article  Google Scholar 

  38. Ahmed A, Rich MW, Love TE, et al. Digoxin and reduction in mortality and hospitalization in heart failure: a comprehensive post hoc analysis of the DIG trial. Eur Heart J. 2006;27:178–86.

    Article  CAS  Google Scholar 

  39. Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure: U.S. carvedilol heart failure study group. N Engl J Med. 1996;334:1349–55.

    Article  CAS  Google Scholar 

  40. MERIT Investigators. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet. 1999;353:2001–7.

    Article  Google Scholar 

  41. CIBIS Investigators. A randomised trial of beta-blockade in heart failure: the cardiac insufficiency Bisoprolol study (CIBIS). Circulation. 1994;90:1765–73.

    Article  Google Scholar 

  42. CIBIS II Investigators and Committees. The cardiac insufficiency Bisoprolol study II (CIBIS II): a randomised trial. Lancet. 1999;353:9–13.

    Article  Google Scholar 

  43. Willenheimer R, van Veldhuisen DJ, Silke B, et al. Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence: results of the randomized cardiac Insuffi ciency Bisoprolol study (CIBIS) III. Circulation. 2005;112:2426–35.

    Article  CAS  Google Scholar 

  44. Packer M, Coats A. Fowler M, and carvedilol prospective randomized cumulative survival study group: effect of carvedilol on survival in severe chronic heart failure (COPERNICUS). N Engl J Med. 2001;344:1651–8.

    Article  CAS  Google Scholar 

  45. Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet. 2001;357:1385–90.

    Article  CAS  Google Scholar 

  46. Investigators BEST. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med. 2001;344:1659–67.

    Article  Google Scholar 

  47. Flather M, Shibata M, Coats A, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J. 2005;26:215–25.

    Article  CAS  Google Scholar 

  48. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2012;14:803–69.

    Article  CAS  Google Scholar 

  49. Al-Gobari M, El Khatib C, Pillon F, et al. β-Blockers for the prevention of sudden cardiac death in heart failure patients: a meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2013;13:52–61.

    Article  CAS  Google Scholar 

  50. Fonarow GC, Abraham WT, Albert NM, et al. Dosing of beta-blocker therapy before, during, and after hospitalization for heart failure (from organized program to initiate lifesaving treatment in hospitalized patients with heart failure). Am J Cardiol. 2008;1(102):1524–9.

    Article  Google Scholar 

  51. Tardif JC, Ponikowski P, Kahan T, ASSOCIATE study investigators. Efficacy of the if current inhibitor ivabradine in patients with chronic stable angina receiving beta-blocker therapy: a 4 month, randomized, placebo-controlled trial. Eur Heart J. 2009;30:540–8.

    Article  CAS  Google Scholar 

  52. Fox K, Ford I, Steg PG, et al. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:807–16.

    Article  CAS  Google Scholar 

  53. Fox K, Ford I, Steg PG, et al. Ivabradine in stable coronary artery disease without clinical heart failure. N Engl J Med. 2014;371:1091–9.

    Article  Google Scholar 

  54. Lund LH, Benson L, Dahlström U, et al. Association between use of β-blockers and outcomes in patients with heart failure and preserved ejection fraction. JAMA. 2014;312:2008–18.

    Article  Google Scholar 

  55. Hernandez AF, Hammill BG, O’Connor CM, et al. Clinical effectiveness of beta-blockers in heart failure: findings from the OPTIMIZE-HF (organized program to initiate lifesaving treatment in hospitalized patients with heart failure) registry. J Am Coll Cardiol. 2009;53:184–92.

    Article  CAS  Google Scholar 

  56. Patel K, Fonarow GC, Ekundayo OJ, et al. Beta-blockers in older patients with heart failure and preserved ejection fraction: class, dosage, and outcomes. Int J Cardiol. 2014;173:393–401.

    Article  Google Scholar 

  57. Nevzorov R, Porath A, Henkin Y, et al. Effect of beta blocker therapy on survival of patients with heart failure and preserved systolic function following hospitalization with acute decompensated heart failure. Eur J Intern Med. 2012;23:374–8.

    Article  CAS  Google Scholar 

  58. El-Refai M, Peterson EL, Wells K, et al. Comparison of β-blocker effectiveness in heart failure patients with preserved ejection fraction versus those with reduced ejection fraction. J Card Fail. 2013;19:73–9.

    Article  CAS  Google Scholar 

  59. Liu F, Chen Y, Feng X, et al. Effects of beta-blockers on heart failure with preserved ejection fraction: a meta-analysis. PLoS One. 2014;9:e90555.

    Article  Google Scholar 

  60. Meyer M, LeWinter MM. Heart rate and heart failure with preserved ejection fraction: time to slow beta-blocker use? Circ Heart Fail. 2019;12:e006213.

    Article  Google Scholar 

  61. Flannery G, Gehrig-Mills R, Billah B, et al. Analysis of randomized controlled trials on the effect of magnitude of heart rate reduction on clinical outcomes in patients with systolic chronic heart failure receiving beta-blockers. Am J Cardiol. 2008;101:865–9.

    Article  CAS  Google Scholar 

  62. McAlister FA, Wiebe N, Ezekowitz JA, et al. Meta-analysis: beta-blocker dose, heart rate reduction, and death in patients with heart failure. Ann Intern Med. 2009;150:784–94.

    Article  Google Scholar 

  63. Sarraf M, Francis GS. It is all about heart rate. Or is it? J Am Coll Cardiol. 2012;59:1946–7.

    Article  Google Scholar 

  64. Cullington D, Goode KM, Clark AL, et al. Heart rate achieved or beta-blocker dose in patients with chronic heart failure: which is the better target? Eur J Heart Fail. 2012;14:737–47.

    Article  CAS  Google Scholar 

  65. Swedberg K, Komajda M, Böhm M, for the SHIFT Investigators, et al. Effects on outcomes of heart rate reduction by ivabradine in patients with congestive heart failure: is there an influence of betablocker dose? Findings from the SHIFT (systolic heart failure treatment with the if inhibitor ivabradine trial) study. J Am Coll Cardiol. 2012;59:1938–45.

    Article  CAS  Google Scholar 

  66. Tanboğa İH, Topçu S, Aksakal E, et al. The risk of atrial fibrillation with ivabradine treatment: a meta-analysis with trial sequential analysis of more than 40000 patients. Clin Cardiol. 2016;39:615–20.

    Article  Google Scholar 

  67. Komajda M. Ivabradine. Handb Exp Pharmacol. 2017;243:167–75.

    Article  CAS  Google Scholar 

  68. Tóth N, Soós A, Váradi A, et al. Effect of ivabradine in heart failure: a meta-analysis of heart failure patients with reduced versus preserved ejection fraction. Can J Physiol Pharmacol. 2021;99:1159–74.

    Article  Google Scholar 

  69. Kotecha D, Holmes J, Krum H, et al. Beta-blockers in heart failure collaborative group. Efficacy of β blockers in patients with heart failure plus atrial fibrillation: an individual-patient data meta-analysis. Lancet. 2014;384:2235–43.

    Article  CAS  Google Scholar 

  70. Porapakkham P, Krum H. Is target dose of beta-blocker more important than achieved heart rate or heart rate change in patients with systolic chronic heart failure? Cardiovasc Ther. 2010;28:93–100.

    Article  CAS  Google Scholar 

  71. Huang RL, Listerman J, Goring J, et al. Beta-blocker therapy for heart failure: should the therapeutic target be dose or heart rate reduction? Congest Heart Fail. 2006;12:206–10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Palatini .

Editor information

Editors and Affiliations

Ethics declarations

There are no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palatini, P. (2023). High Heart Rate: A Predictor of Heart Failure in Healthy Subjects and a Risk Factor for Adverse Outcome in Patients with Heart Failure. In: Dorobantu, M., Voicu, V., Grassi, G., Agabiti-Rosei, E., Mancia, G. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-39315-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39315-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39314-3

  • Online ISBN: 978-3-031-39315-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics