Skip to main content

Ventricular Arrhythmias, Hypertension, and Heart Failure

  • Chapter
  • First Online:
Hypertension and Heart Failure

Abstract

Ventricular arrhythmias (VAs) are frequent in hypertensive patients, and this association may have clinical significance. There are multiple responsible mechanisms: left ventricular hypertrophy (LVH), renin–angiotensin–aldosterone system and sympathetic nervous system activation, and the presence of atrial fibrillation (AF), genetic factors, heart failure (HF), QT interval (QTc) prolongation, myocardial ischemia, delayed or early afterdepolarizations, and electrolyte imbalances. Pharmacological treatment in association with lifestyle changes are aimed at prevention or regression of LVH with blood pressure (BP) control. Other therapeutic options according to the severity of the ventricular arrhythmia include implantable cardioverter defibrillator, ablation, renal sympathetic denervation, and cardiac sympathetic denervation (CSD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACEI:

Angiotensin-converting enzyme inhibitor

AF:

Atrial fibrillation

APD:

Action potential duration

ARB:

Angiotensin receptor blocker

ARNI:

Angiotensin receptor blocker/neprilysin inhibitor

BP:

Blood pressure

CA:

Catheter ablation

CAD:

Coronary artery disease

CRS:

Cardiorenal metabolic syndrome

CSD:

Cardiac sympathetic denervation

Cx43:

Gap junction connexin 43

ECG:

Electrocardiography

ECM:

Extracellular matrix

HF:

Heart failure

HFpEF:

Heart failure with preserved left ventricular ejection fraction

HFrEF:

Heart failure with reduced left ventricular ejection fraction

HHD:

Hypertensive heart disease

HTN:

Hypertension

ICD:

Implantable cardioverter defibrillator

IGF-1:

Insulin-like growth factor-1

LIFE:

Losartan Intervention for Endpoint Reduction in Hypertension

LV:

Left ventricular

LVEF:

Left ventricular ejection fraction

LVH:

Left ventricular hypertrophy

NSVT:

Non-sustained ventricular tachycardia

NPY:

Neuropeptide Y

OMT:

Optimal medical therapy

PKC:

Protein kinase C

RSDN:

Renal sympathetic denervation

SCD:

Sudden cardiac death

T2DM:

Type 2 diabetes mellitus

VA:

Ventricular arrhythmia

VF:

Ventricular fibrillation

VPB:

Ventricular premature beat

VT:

Ventricular tachycardia

References

  1. Nadarajah R, Patel PA, Tayebjee MH. Is hypertensive left ventricular hypertrophy a cause of sustained ventricular arrhythmias in humans? J Hum Hypertens. 2021;35:492–8.

    Article  CAS  Google Scholar 

  2. Rapsomaniki E, Timmis A, George J, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet. 2014;383:1899–911.

    Article  Google Scholar 

  3. Lip GYH, Coca A, Kahan T, et al. Hypertension and cardiac arrhythmias: a consensus document from the European heart rhythm association (EHRA) and ESC Council on hypertension, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS) and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología (SOLEACE). EP Europace. 2017;19:891–911.

    Article  Google Scholar 

  4. Chatterjee S, Bavishi C, Sardar P, Agarwal V, Krishnamoorthy P, Grodzicki T, Messerli FH. Meta-analysis of left ventricular hypertrophy and sustained arrhythmias. Am J Cardiol. 2014;114:1049–52.

    Article  Google Scholar 

  5. Varvarousis D, Kallistratos M, Poulimenos L, Triantafyllis A, Tsinivizov P, Giannakopoulos A, Kyfnidis K, Manolis A. Cardiac arrhythmias in arterial hypertension. J Clin Hypertens. 2020;22:1371–8.

    Article  Google Scholar 

  6. Ghali JK, Kadakia S, Cooper RS, Liao Y. Impact of left ventricular hypertrophy on ventricular arrhythmias in the absence of coronary artery disease. J Am Coll Cardiol. 1991;17:1277–82.

    Article  CAS  Google Scholar 

  7. Nunez BD, Lavie CJ, Messerli FH, Schmieder RE, Garavaglia GE, Nunez M. Comparison of diastolic left ventricular filling and cardiac dysrhythmias in hypertensive patients with and without isolated septal hypertrophy. Am J Cardiol. 1994;74:585–9.

    Article  CAS  Google Scholar 

  8. Kuch B, Muscholl M, Luchner A, Döring A, Riegger GAJ, Schunkert H, Hense HW. Gender specific differences in left ventricular adaptation to obesity and hypertension. J Hum Hypertens. 1998;12:685–91.

    Article  CAS  Google Scholar 

  9. Messerli FH, Ventura HO, Elizardi DJ, Dunn FG, Frohlich ED. Hypertension and sudden death: increased ventricular ectopic activity in left ventricular hypertrophy. Am J Med. 1984;77:18–22.

    Article  CAS  Google Scholar 

  10. Levy D, Anderson KM, Savage DD, Balkus SA, Kannel WB, Castelli WP. Risk of ventricular arrhythmias in left ventricular hypertrophy: the Framingham heart study. Am J Cardiol. 1987;60:560–5.

    Article  CAS  Google Scholar 

  11. Ambale-Venkatesh B, Lima JAC. Cardiac MRI: a central prognostic tool in myocardial fibrosis. Nat Rev Cardiol. 2015;12:18–29.

    Article  CAS  Google Scholar 

  12. Burt JR, Zimmerman SL, Kamel IR, Halushka M, Bluemke DA. Myocardial T1 mapping: techniques and potential applications. Radiographics. 2014;34:377–95.

    Article  Google Scholar 

  13. Liu T, Song D, Dong J, Zhu P, Liu J, Liu W, Ma X, Zhao L, Ling S. Current understanding of the pathophysiology of myocardial fibrosis and its quantitative assessment in heart failure. Front Physiol. 2017;8:238.

    Article  Google Scholar 

  14. González A, Ravassa S, López B, Moreno MU, Beaumont J, San José G, Querejeta R, Bayés-Genís A, Díez J. Myocardial remodeling in hypertension. Hypertension. 2018;72:549–58.

    Article  Google Scholar 

  15. Hayden MR, Sowers KM, Pulakat L, Joginpally T, Krueger B, Whaley-Connell A, Sowers JR. Possible mechanisms of local tissue renin-angiotensin system activation in the Cardiorenal metabolic syndrome and type 2 diabetes mellitus. Cardiorenal Med. 2011;1:193–210.

    Article  CAS  Google Scholar 

  16. Myles RC, Wang L, Kang C, Bers DM, Ripplinger CM. Local β-adrenergic stimulation overcomes source-sink mismatch to generate focal arrhythmia. Circ Res. 2012;110:1454–64.

    Article  CAS  Google Scholar 

  17. Huang WA, Boyle NG, Vaseghi M. Cardiac innervation and the autonomic nervous system in sudden cardiac death. Card Electrophysiol Clin. 2017;9:665–79.

    Article  Google Scholar 

  18. Jänig W. Sympathetic nervous system and inflammation: a conceptual view. Auton Neurosci. 2014;182:4–14.

    Article  Google Scholar 

  19. Garg J, Shah S, Shah K, Turagam MK, Natale A, Lakkireddy D. Renal sympathetic denervation for the treatment of recurrent ventricular arrhythmias—ELECTRAM investigators. Pacing Clin Electrophysiol. 2021;44:865–74.

    Article  Google Scholar 

  20. Saffitz JE, Schuessler RB, Yamada KA. Mechanisms of remodeling of gap junction distributions and the development of anatomic substrates of arrhythmias. Cardiovasc Res. 1999;42:309–17.

    Article  CAS  Google Scholar 

  21. Kulan K, Ural D, Komsuoğlu B, Ağaçdiken A, Göldeli Ö, Komsuoğlu SŞ. Significance of QTc prolongation on ventricular arrhythmias in patients with left ventricular hypertrophy secondary to essential hypertension. Int J Cardiol. 1998;64:179–84.

    Article  CAS  Google Scholar 

  22. Haugaa KH, Bos JM, Borkenhagen EJ, Tarrell RF, Morlan BW, Caraballo PJ, Ackerman MJ. Impact of left ventricular hypertrophy on QT prolongation and associated mortality. Heart Rhythm. 2014;11:1957–65.

    Article  Google Scholar 

  23. Perkiömäki JS, Ikäheimo MJ, Pikkujämsä SM, Rantala A, Lilja M, Kesäniemi YA, Huikuri HV. Dispersion of the QT interval and autonomic modulation of heart rate in hypertensive men with and without left ventricular hypertrophy. Hypertension. 1996;28:16–21.

    Article  Google Scholar 

  24. James MA, Jones JV. Systolic Wall stress and ventricular arrhythmia: the role of acute change in blood pressure in the isolated working rat heart. Clin Sci. 1990;79:499–504.

    Article  CAS  Google Scholar 

  25. Baguet J-P, Erdine S, Mallion J-M. European Society of Hypertension Scientific Newsletter: update on hypertension management: hypertension and dysrhythmias. J Hypertens. 2006;24:409–11.

    Article  CAS  Google Scholar 

  26. Shenasa M, Shenasa H. Hypertension, left ventricular hypertrophy, and sudden cardiac death. Int J Cardiol. 2017;237:60–3.

    Article  Google Scholar 

  27. Okin PM, Bang CN, Wachtell K, Hille DA, Kjeldsen SE, Dahlöf B, Devereux RB. Relationship of sudden cardiac death to new-onset atrial fibrillation in hypertensive patients with left ventricular hypertrophy. Circ Arrhythm Electrophysiol. 2013;6:243–51.

    Article  CAS  Google Scholar 

  28. Grönefeld GC, Mauss O, Li Y-G, Klingenheben T, Hohnloser SH. Association between atrial fibrillation and appropriate implantable cardioverter defibrillator therapy: results from a prospective study. J Cardiovasc Electrophysiol. 2000;11:1208–14.

    Article  Google Scholar 

  29. Balasubramaniam R, Kistler PM. Atrial fibrillation in heart failure: the chicken or the egg? Heart. 2009;95:535–9.

    Article  CAS  Google Scholar 

  30. Arnett DK, Hong Y, Bella JN, Oberman A, Kitzman DW, Hopkins PN, Rao DC, Devereux RB. Sibling correlation of left ventricular mass and geometry in hypertensive African Americans and whites: the HyperGEN study*. Am J Hypertens. 2001;14:1226–30.

    Article  CAS  Google Scholar 

  31. Post WS, Larson MG, Myers RH, Galderisi M, Levy D. Heritability of left ventricular mass. Hypertension. 1997;30:1025–8.

    Article  CAS  Google Scholar 

  32. Doolan G, Nguyen L, Chung J, Ingles J, Semsarian C. Progression of left ventricular hypertrophy and the angiotensin-converting enzyme gene polymorphism in hypertrophic cardiomyopathy. Int J Cardiol. 2004;96:157–63.

    Article  Google Scholar 

  33. Nagy Z, Busjahn A, Bähring S, Faulhaber H-D, Gohlke H-R, Knoblauch H, Rosenthal M, Müller-Myhsok B, Schuster H, Luft FC. Quantitative trait loci for blood pressure exist near the IGF-1, the Liddle syndrome, the angiotensin II-receptor gene and the renin loci in man. J Am Soc Nephrol. 1999;10:1709–16.

    Article  CAS  Google Scholar 

  34. Kuch-Wocial A, Ślubowska K, Kostrubiec M, Pasierski T, Januszewicz W, Świtalska H, Wocial B, Pruszczyk P. Plasma neuropeptide Y immunoreactivity influences left ventricular mass in pheochromocytoma. Clin Chim Acta. 2004;345:43–7.

    Article  CAS  Google Scholar 

  35. Arnett DK, Li N, Tang W, Rao DC, Devereux RB, Claas SA, Kraemer R, Broeckel U. Genome-wide association study identifies single-nucleotide polymorphism in KCNB1 associated with left ventricular mass in humans: the HyperGEN study. BMC Med Genet. 2009;10:43.

    Article  Google Scholar 

  36. Benova TE, Bacova BS, Viczenczova C, Barancik M, Tribulova N. Myocardial Connexin-43 is implicated in the prevention of malignant arrhythmia in rats suffering from essential hypertension. In: Update on essential hypertension. London: Intech; 2016. https://doi.org/10.5772/63456.

    Chapter  Google Scholar 

  37. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the heart failure association (HFA) of the ESC. Eur Heart J. 2021;42:3599–726.

    Article  CAS  Google Scholar 

  38. Oh GC, Cho H-J. Blood pressure and heart failure. Clin Hypertens. 2020;26:1.

    Article  Google Scholar 

  39. McMurray JJV, Carson PE, Komajda M, McKelvie R, Zile MR, Ptaszynska A, Staiger C, Donovan JM, Massie BM. Heart failure with preserved ejection fraction: clinical characteristics of 4133 patients enrolled in the I-PRESERVE trial. Eur J Heart Fail. 2008;10:149–56.

    Article  Google Scholar 

  40. Adabag S, Smith LG, Anand IS, Berger AK, Luepker RV. Sudden cardiac death in heart failure patients with preserved ejection fraction. J Card Fail. 2012;18:749–54.

    Article  Google Scholar 

  41. Pezawas T, Burger AL, Binder T, Diedrich A. Importance of diastolic function for the prediction of arrhythmic death. Circ Arrhythm Electrophysiol. 2020;13:e007757.

    Article  Google Scholar 

  42. Oktay AA, Lavie CJ, Milani RV, Ventura HO, Gilliland YE, Shah S, Cash ME. Current perspectives on left ventricular geometry in systemic hypertension. Prog Cardiovasc Dis. 2016;59:235–46.

    Article  Google Scholar 

  43. Marcus GM. Evaluation and Management of Premature Ventricular Complexes. Circulation. 2020;141:1404–18.

    Article  Google Scholar 

  44. Yiu K-H, Tse H-F. Hypertension and cardiac arrhythmias: a review of the epidemiology, pathophysiology and clinical implications. J Hum Hypertens. 2008;22:380–8.

    Article  Google Scholar 

  45. Siscovick DS, Raghunathan TE, Psaty BM, Koepsell TD, Wicklund KG, Lin X, Cobb L, Rautaharju PM, Copass MK, Wagner EH. Diuretic therapy for hypertension and the risk of primary cardiac arrest. N Engl J Med. 1994;330:1852–7.

    Article  CAS  Google Scholar 

  46. Wachtell K, Okin PM, Olsen MH, Dahlöf B, Devereux RB, Ibsen H, Kjeldsen SE, Lindholm LH, Nieminen MS, Thygesen K. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive therapy and reduction in sudden cardiac death. Circulation. 2007;116:700–5.

    Article  Google Scholar 

  47. Antzelevitch C, Belardinelli L, Zygmunt AC, Burashnikov A, Di Diego JM, Fish JM, Cordeiro JM, Thomas G. Electrophysiological effects of Ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation. 2004;110:904–10.

    Article  CAS  Google Scholar 

  48. Schram G, Zhang L, Derakhchan K, Ehrlich JR, Belardinelli L, Nattel S. Ranolazine: ion-channel-blocking actions and in vivo electrophysiological effects. Br J Pharmacol. 2004;142:1300–8.

    Article  CAS  Google Scholar 

  49. Antoons G, Oros A, Bito V, Sipido KR, Vos MA. Cellular basis for triggered ventricular arrhythmias that occur in the setting of compensated hypertrophy and heart failure: considerations for diagnosis and treatment. J Electrocardiol. 2007;40:S8–S14.

    Article  Google Scholar 

  50. Freitas P, Ferreira AM, Arteaga-Fernández E, et al. The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death. J Cardiovasc Magn Reson. 2019;21:50.

    Article  Google Scholar 

  51. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society. Heart Rhythm. 2018;15:e73–e189.

    Article  Google Scholar 

  52. Zipes DP, Camm AJ, Borggrefe M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation. 2006;114:e385–484.

    Article  Google Scholar 

  53. Bazoukis G, Korantzopoulos P, Tsioufis C. The impact of renal sympathetic denervation on cardiac electrophysiology and arrhythmias: a systematic review of the literature. Int J Cardiol. 2016;220:87–101.

    Article  Google Scholar 

  54. Kosiuk J, Hilbert S, Pokushalov E, Hindricks G, Steinberg JS, Bollmann A. Renal denervation for treatment of cardiac arrhythmias: state of the art and future directions. J Cardiovasc Electrophysiol. 2015;26:233–8.

    Article  Google Scholar 

  55. Hofferberth SC, Cecchin F, Loberman D, Fynn-Thompson F. Left thoracoscopic sympathectomy for cardiac denervation in patients with life-threatening ventricular arrhythmias. J Thorac Cardiovasc Surg. 2014;147:404–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deaconu, A., Vătășescu, R. (2023). Ventricular Arrhythmias, Hypertension, and Heart Failure. In: Dorobantu, M., Voicu, V., Grassi, G., Agabiti-Rosei, E., Mancia, G. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-39315-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39315-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39314-3

  • Online ISBN: 978-3-031-39315-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics