Skip to main content

Cardiac Biomarkers in the Progression to Heart Failure in Hypertension

  • Chapter
  • First Online:
Hypertension and Heart Failure

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

  • 122 Accesses

Abstract

The heart remodels and its function gradually worsens in the presence of cardiovascular risk factors such as hypertension. In patients with hypertension, the process of myocardial remodeling and dysfunction starts years before heart failure (HF) symptoms emerge. As such, the development and progression of HF may well be detected long before the onset of HF signs or symptoms. To date, we are in need of biomarkers that enable detection of HF in a subclinical stage to initiate timely interventions that block HF pathology. Circulating biomarkers can help unravel the molecular mechanisms behind HF pathogenesis and identify individuals at highest risk of developing overt HF. In addition, circulating biomarkers may help monitor the effect of preventative therapies that aim to counteract on the development of HF. In this chapter, we outline established and promising biomarkers that reflect pathological alterations in the heart suggestive of progression toward symptomatic HF. In particular, we focus on circulating biomarkers of cardiac damage for risk stratification and prediction of HF in hypertension. In addition, we describe the future perspectives for biomarker discovery and validation, particularly advancements in laboratory technology and analytics that boost the development of multi-marker panels for integrative biomarker-based risk assessment of HF progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seferović PM, Vardas P, Jankowska EA, Maggioni AP, Timmis A, Milinković I, et al. The Heart Failure Association Atlas: heart failure epidemiology and management statistics 2019. Eur J Heart Fail. 2021;23(6):906–14.

    Article  Google Scholar 

  2. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275(20):1557–62.

    Article  CAS  Google Scholar 

  3. Braunwald E. Heart failure. JACC Heart Fail. 2013;1(1):1–20.

    Article  Google Scholar 

  4. Cauwenberghs N, Knez J, D’hooge J, Thijs L, Yang W-Y, Wei F-F, et al. Longitudinal changes in LV structure and diastolic function in relation to arterial properties in general population. JACC Cardiovasc Imaging. 2017;10(11):1307–16.

    Article  Google Scholar 

  5. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2022;79(17):e263–421.

    Google Scholar 

  6. World Health Organization. Biomarkers in risk assessment: validity and validation. Geneva: World Health Organization; 2001. p. 235–6, 222.

    Google Scholar 

  7. Morrow DA, de Lemos JA. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation. 2007;115(8):949–52.

    Article  Google Scholar 

  8. Whelton PK, Carey RM, Aronow WS, Casey DEJ, Collins KJ, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical Pr. Circulation. 2018;138(17):484–594.

    Google Scholar 

  9. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104.

    Article  Google Scholar 

  10. Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci. 2015;130(2):57–77.

    Article  Google Scholar 

  11. Maisel AS, Duran JM, Wettersten N. Natriuretic peptides in heart failure. Heart Fail Clin. 2018;14(1):13–25.

    Article  Google Scholar 

  12. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726.

    Article  CAS  Google Scholar 

  13. Willeit P, Kaptoge S, Welsh P, Butterworth AS, Chowdhury R, Spackman SA, et al. Natriuretic peptides and integrated risk assessment for cardiovascular disease: an individual-participant-data meta-analysis. Lancet Diabetes Endocrinol. 2016;4(10):840–9.

    Article  Google Scholar 

  14. de Boer RA, Nayor M, deFilippi CR, Enserro D, Bhambhani V, Kizer JR, et al. Association of cardiovascular biomarkers with incident heart failure with preserved and reduced ejection fraction. JAMA Cardiol. 2018;3(3):215–24.

    Article  Google Scholar 

  15. Campbell DJ, Gong FF, Jelinek MV, Castro JM, Coller JM, McGrady M, et al. Prediction of incident heart failure by serum amino-terminal pro-B-type natriuretic peptide level in a community-based cohort. Eur J Heart Fail. 2019;21(4):449–59.

    Article  CAS  Google Scholar 

  16. Ravassa S, Kuznetsova T, Varo N, Thijs L, Delles C, Dominiczak A, et al. Biomarkers of cardiomyocyte injury and stress identify left atrial and left ventricular remodelling and dysfunction: a population-based study. Int J Cardiol. 2015;185:177–85.

    Article  Google Scholar 

  17. Neeland IJ, Drazner MH, Berry JD, Ayers CR, DeFilippi C, Seliger SL, et al. Biomarkers of chronic cardiac injury and hemodynamic stress identify a malignant phenotype of left ventricular hypertrophy in the general population. J Am Coll Cardiol. 2013;61(2):187–95.

    Article  CAS  Google Scholar 

  18. Myhre PL, Claggett B, Yu B, Skali H, Solomon SD, Røsjø H, et al. Sex and race differences in N-terminal pro–B-type natriuretic peptide concentration and absolute risk of heart failure in the community. JAMA Cardiol. 2022;7(6):623–31.

    Article  Google Scholar 

  19. Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition o. Eur J Heart Fail. 2021;23(3):352–80.

    Article  Google Scholar 

  20. White HD. Pathobiology of troponin elevations. J Am Coll Cardiol. 2011;57(24):2406–8.

    Article  CAS  Google Scholar 

  21. Aeschbacher S, Schoen T, Bossard M, van der Lely S, Glättli K, Todd J, et al. Relationship between high-sensitivity cardiac troponin i and blood pressure among young and healthy adults. Am J Hypertens. 2015;28(6):789–96.

    Article  CAS  Google Scholar 

  22. McEvoy JW, Chen Y, Nambi V, Ballantyne CM, Sharrett AR, Appel LJ, et al. High-sensitivity cardiac troponin T and risk of hypertension. Circulation. 2015;132(9):825–33.

    Article  CAS  Google Scholar 

  23. Seliger SL, Hong SN, Christenson RH, Kronmal R, Daniels LB, Lima JAC, et al. High-sensitive cardiac troponin T as an early biochemical signature for clinical and subclinical heart failure: MESA (multi-ethnic study of atherosclerosis). Circulation. 2017;135(16):1494–505.

    Article  CAS  Google Scholar 

  24. Yan I, Börschel CS, Neumann JT, Sprünker NA, Makarova N, Kontto J, et al. High-sensitivity cardiac troponin I levels and prediction of heart failure. JACC Heart Fail. 2020;8(5):401–11.

    Article  Google Scholar 

  25. Evans JDW, Dobbin SJH, Pettit SJ, Di Angelantonio E, Willeit P. High-sensitivity cardiac troponin and new-onset heart failure. JACC Heart Fail. 2018;6(3):187–97.

    Article  Google Scholar 

  26. de Lemos JA, Drazner MH, Omland T, Ayers CR, Khera A, Rohatgi A, et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA. 2010;304(22):2503–12.

    Article  Google Scholar 

  27. Cauwenberghs N, Ravassa S, Thijs L, Haddad F, Yang W-Y, Wei F-F, et al. Circulating biomarkers predicting longitudinal changes in left ventricular structure and function in a general population. J Am Heart Assoc. 2019;8(2):e010430.

    Article  CAS  Google Scholar 

  28. Siciliano M, Mettimano M, Dondolini-Poli A, Ballarin S, Migneco A, Annese R, et al. Troponin I serum concentration: a new marker of left ventricular hypertrophy in patients with essential hypertension. Ital Heart J. 2000;1(8):532–5.

    CAS  Google Scholar 

  29. Sato Y, Yamamoto E, Sawa T, Toda K, Hara T, Iwasaki T, et al. High-sensitivity cardiac troponin T in essential hypertension. J Cardiol. 2011;58(3):226–31.

    Article  Google Scholar 

  30. Pandey A, Keshvani N, Ayers C, Correa A, Drazner MH, Lewis A, et al. Association of cardiac injury and malignant left ventricular hypertrophy with risk of heart failure in African Americans. JAMA Cardiol. 2019;4(1):51.

    Article  Google Scholar 

  31. Jagodzinski A, Neumann JT, Ojeda F, Sörensen NA, Wild P, Münzel T, et al. Cardiovascular biomarkers in hypertensive patients with medical treatment—results from the randomized TEAMSTA protect I trial. Clin Chem. 2017;63(12):1877–85.

    Article  CAS  Google Scholar 

  32. Ackermann MA, Kontrogianni-Konstantopoulos A. Myosin binding protein-C: a regulator of actomyosin interaction in striated muscle. J Biomed Biotechnol. 2011;2011:1–9.

    Article  Google Scholar 

  33. Govindan S, Kuster DW, Lin B, Kahn DJ, Jeske WP, Walenga JM, et al. Increase in cardiac myosin binding protein-C plasma levels is a sensitive and cardiac-specific biomarker of myocardial infarction. Am J Cardiovasc Dis. 2013;3(2):60–70.

    CAS  Google Scholar 

  34. Kaier TE, Twerenbold R, Puelacher C, Marjot J, Imambaccus N, Boeddinghaus J, et al. Direct comparison of cardiac myosin-binding protein C with cardiac troponins for the early diagnosis of acute myocardial infarction. Circulation. 2017;136(16):1495–508.

    Article  CAS  Google Scholar 

  35. Shrivastava A, Haase T, Zeller T, Schulte C. Biomarkers for heart failure prognosis: proteins, genetic scores and non-coding RNAs. Front Cardiovasc Med. 2020;7:601364.

    Article  CAS  Google Scholar 

  36. Tong CW, Dusio GF, Govindan S, Johnson DW, Kidwell DT, De La Rosa LM, et al. Usefulness of released cardiac myosin binding protein-C as a predictor of cardiovascular events. Am J Cardiol. 2017;120(9):1501–7.

    Article  CAS  Google Scholar 

  37. Anand A, Chin C, Shah ASV, Kwiecinski J, Vesey A, Cowell J, et al. Cardiac myosin-binding protein C is a novel marker of myocardial injury and fibrosis in aortic stenosis. Heart. 2018;104(13):1101–8.

    Article  CAS  Google Scholar 

  38. Otaki Y, Watanabe T, Kubota I. Heart-type fatty acid-binding protein in cardiovascular disease: a systemic review. Clin Chim Acta. 2017;474:44–53.

    Article  CAS  Google Scholar 

  39. Ishii J, Ozaki Y, Lu J, Kitagawa F, Kuno T, Nakano T, et al. Prognostic value of serum concentration of heart-type fatty acid–binding protein relative to cardiac troponin T on admission in the early hours of acute coronary syndrome. Clin Chem. 2005;51(8):1397–404.

    Article  CAS  Google Scholar 

  40. Goel H, Melot J, Krinock MD, Kumar A, Nadar SK, Lip GYH. Heart-type fatty acid-binding protein: an overlooked cardiac biomarker. Ann Med. 2020;52(8):444–61.

    Article  CAS  Google Scholar 

  41. Lamounier-Zepter V, Look C, Alvarez J, Christ T, Ravens U, Schunck W-H, et al. Adipocyte fatty acid-binding protein suppresses cardiomyocyte contraction. Circ Res. 2009;105(4):326–34.

    Article  CAS  Google Scholar 

  42. Arimoto T, Takeishi Y, Shiga R, Fukui A, Tachibana H, Nozaki N, et al. Prognostic value of elevated circulating heart-type fatty acid binding protein in patients with congestive heart failure. J Card Fail. 2005;11(1):56–60.

    Article  CAS  Google Scholar 

  43. Gruson D, Adamantidou C, Ahn SA, Rousseau MF. Heart-type fatty acid binding protein is related to severity and established cardiac biomarkers of heart failure. Adv Lab Med. 2021;2(4):541–4.

    Google Scholar 

  44. Niizeki T, Takeishi Y, Arimoto T, Takabatake N, Nozaki N, Hirono O, et al. Heart-type fatty acid-binding protein is more sensitive than troponin T to detect the ongoing myocardial damage in chronic heart failure patients. J Card Fail. 2007;13(2):120–7.

    Article  CAS  Google Scholar 

  45. Ishino M, Takeishi Y, Niizeki T, Watanabe T, Nitobe J, Miyamoto T, et al. Risk stratification of chronic heart failure patients by multiple biomarkers implications of BNP, H-FABP, and PTX3. Circ J. 2008;72(11):1800–5.

    Article  CAS  Google Scholar 

  46. Niizeki T, Takeishi Y, Arimoto T, Takahashi T, Okuyama H, Takabatake N, et al. Combination of heart-type fatty acid binding protein and brain natriuretic peptide can reliably risk stratify patients hospitalized for chronic heart failure. Circ J. 2005;69(8):922–7.

    Article  CAS  Google Scholar 

  47. Niizeki T, Takeishi Y, Takabatake N, Shibata Y, Konta T, Kato T, et al. Circulating levels of heart-type fatty acid-binding protein in a general Japanese population effects of age, gender and physiologic characteristics. Circ J. 2007;71(9):1452–7.

    Article  CAS  Google Scholar 

  48. Otaki Y, Watanabe T, Takahashi H, Hirayama A, Narumi T, Kadowaki S, et al. Association of heart-type fatty acid-binding protein with cardiovascular risk factors and all-cause mortality in the general population: The Takahata Study. PLoS One. 2014;9(5):e94834.

    Article  Google Scholar 

  49. Gedikli O, Ozturk S, Yilmaz H, Baykan M, Kiris A, Durmus I, et al. Relationship between arterial stiffness and myocardial damage in patients with newly diagnosed essential hypertension. Am J Hypertens. 2008;21(9):989–93.

    Article  Google Scholar 

  50. Setsuta K, Seino Y, Mizuno K. Heart-type fatty acid-binding protein is a novel prognostic marker in patients with essential hypertension. Int J Cardiol. 2014;176(3):1323–5.

    Article  Google Scholar 

  51. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DEJ, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the heart failure Society of America. J Am Coll Cardiol. 2017;70(6):776–803.

    Article  Google Scholar 

  52. Dong R, Zhang M, Hu Q, Zheng S, Soh A, Zheng Y, et al. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (review). Int J Mol Med. 2017;41:599.

    Google Scholar 

  53. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JPM, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121–8.

    Article  CAS  Google Scholar 

  54. Calvier L, Martinez-Martinez E, Miana M, Cachofeiro V, Rousseau E, Sádaba JR, et al. The impact of galectin-3 inhibition on aldosterone-induced cardiac and renal injuries. JACC Heart Fail. 2015;3(1):59–67.

    Article  Google Scholar 

  55. Filipe MD, Meijers WC, Rogier van der Velde A, de Boer RA. Galectin-3 and heart failure: prognosis, prediction & clinical utility. Clin Chim Acta. 2015;443:48–56.

    Article  CAS  Google Scholar 

  56. Lok DJ, Lok SI, Bruggink-André de la Porte PW, Badings E, Lipsic E, van Wijngaarden J, et al. Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol. 2013;102(2):103–10.

    Article  CAS  Google Scholar 

  57. Michalski B, Trzciński P, Kupczyńska K, Miśkowiec D, Pęczek Ł, Nawrot B, et al. The differences in the relationship between diastolic dysfunction, selected biomarkers and collagen turn-over in heart failure patients with preserved and reduced ejection fraction. Cardiol J. 2017;24(1):35–42.

    Article  Google Scholar 

  58. Stoltze Gaborit F, Bosselmann H, Kistorp C, Iversen K, Kumler T, Gustafsson F, et al. Galectin 3: association to neurohumoral activity, echocardiographic parameters and renal function in outpatients with heart failure. BMC Cardiovasc Disord. 2016;16(1):117.

    Article  Google Scholar 

  59. Felker GM, Fiuzat M, Shaw LK, Clare R, Whellan DJ, Bettari L, et al. Galectin-3 in ambulatory patients with heart failure. Circ Heart Fail. 2012;5(1):72–8.

    Article  CAS  Google Scholar 

  60. van der Velde AR, Gullestad L, Ueland T, Aukrust P, Guo Y, Adourian A, et al. Prognostic value of changes in galectin-3 levels over time in patients with heart failure. Circ Heart Fail. 2013;6(2):219–26.

    Article  Google Scholar 

  61. Lok DJA, Van Der Meer P, de la Porte PWB-A, Lipsic E, Van Wijngaarden J, Hillege HL, et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol. 2010;99(5):323–8.

    Article  CAS  Google Scholar 

  62. Gullestad L, Ueland T, Kjekshus J, Nymo SH, Hulthe J, Muntendam P, et al. The predictive value of galectin-3 for mortality and cardiovascular events in the controlled rosuvastatin multinational trial in heart failure (CORONA). Am Heart J. 2012;164(6):878–83.

    Article  CAS  Google Scholar 

  63. Ghorbani A, Bhambhani V, Christenson RH, Meijers WC, de Boer RA, Levy D, et al. Longitudinal change in galectin-3 and incident cardiovascular outcomes. J Am Coll Cardiol. 2018;72(25):3246–54.

    Article  CAS  Google Scholar 

  64. Yao Y, Shen D, Chen R, Ying C, Wang C, Guo J, et al. Galectin-3 predicts left ventricular remodeling of hypertension. J Clin Hypertens. 2016;18(6):506–11.

    Article  CAS  Google Scholar 

  65. Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60(14):1249–56.

    Article  CAS  Google Scholar 

  66. Suthahar N, Lau ES, Blaha MJ, Paniagua SM, Larson MG, Psaty BM, et al. Sex-specific associations of cardiovascular risk factors and biomarkers with incident heart failure. J Am Coll Cardiol. 2020;76(12):1455–65.

    Article  CAS  Google Scholar 

  67. Besler C, Lang D, Urban D, Rommel K-P, von Roeder M, Fengler K, et al. Plasma and cardiac galectin-3 in patients with heart failure reflects both inflammation and fibrosis. Circ Heart Fail. 2017;10(3):e003804.

    Article  CAS  Google Scholar 

  68. Pascual-Figal DA, Januzzi JL. The biology of ST2: The International ST2 consensus panel. Am J Cardiol. 2015;115(7):3B–7B.

    Article  CAS  Google Scholar 

  69. Aimo A, Januzzi JL, Bayes-Genis A, Vergaro G, Sciarrone P, Passino C, et al. Clinical and prognostic significance of sST2 in heart failure. J Am Coll Cardiol. 2019;74(17):2193–203.

    Article  CAS  Google Scholar 

  70. Wang Z, Pan X, Xu H, Wu Y, Jia X, Fang Y, et al. Serum soluble ST2 Is a valuable prognostic biomarker in patients with acute heart failure. Front Cardiovasc Med. 2022;9:812654.

    Article  CAS  Google Scholar 

  71. Aimo A, Vergaro G, Ripoli A, Bayes-Genis A, Pascual Figal DA, de Boer RA, et al. Meta-analysis of soluble suppression of tumorigenicity-2 and prognosis in acute heart failure. JACC Heart Fail. 2017;5(4):287–96.

    Article  Google Scholar 

  72. van Vark LC, Lesman-Leegte I, Baart SJ, Postmus D, Pinto YM, Orsel JG, et al. Prognostic value of serial ST2 measurements in patients with acute heart failure. J Am Coll Cardiol. 2017;70(19):2378–88.

    Article  Google Scholar 

  73. Boisot S, Beede J, Isakson S, Chiu A, Clopton P, Januzzi J, et al. Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. J Card Fail. 2008;14(9):732–8.

    Article  Google Scholar 

  74. Bayes-Genis A, de Antonio M, Vila J, Peñafiel J, Galán A, Barallat J, et al. Head-to-head comparison of 2 myocardial fibrosis biomarkers for long-term heart failure risk stratification. J Am Coll Cardiol. 2014;63(2):158–66.

    Article  CAS  Google Scholar 

  75. Yin X, Cao H, Wei Y, Li H-H. Alteration of the IL-33-sST2 pathway in hypertensive patients and a mouse model. Hypertens Res. 2019;42(11):1664–71.

    Article  CAS  Google Scholar 

  76. Coglianese EE, Larson MG, Vasan RS, Ho JE, Ghorbani A, McCabe EL, et al. Distribution and clinical correlates of the interleukin receptor family member soluble ST2 in the Framingham Heart Study. Clin Chem. 2012;58(12):1673–81.

    Article  CAS  Google Scholar 

  77. Ho JE, Larson MG, Ghorbani A, Cheng S, Vasan RS, Wang TJ, et al. Soluble ST2 predicts elevated SBP in the community. J Hypertens. 2013;31(7):1431–6.

    Article  CAS  Google Scholar 

  78. Ojji DB, Opie LH, Lecour S, Lacerda L, Adeyemi OM, Sliwa K. The effect of left ventricular remodelling on soluble ST2 in a cohort of hypertensive subjects. J Hum Hypertens. 2014;28(7):432–7.

    Article  CAS  Google Scholar 

  79. Ojji DB, Opie LH, Lecour S, Lacerda L, Adeyemi O, Sliwa K. Relationship between left ventricular geometry and soluble ST2 in a cohort of hypertensive patients. J Clin Hypertens. 2013;15(12):899–904.

    Article  CAS  Google Scholar 

  80. Hughes MF, Appelbaum S, Havulinna AS, Jagodzinski A, Zeller T, Kee F, et al. ST2 may not be a useful predictor for incident cardiovascular events, heart failure and mortality. Heart. 2014;100(21):1715–21.

    Article  Google Scholar 

  81. Parikh RH, Seliger SL, Christenson R, Gottdiener JS, Psaty BM, DeFilippi CR. Soluble ST2 for prediction of heart failure and cardiovascular death in an elderly, community-dwelling population. J Am Heart Assoc. 2016;5(8):e003188.

    Article  Google Scholar 

  82. Liu T, Song D, Dong J, Zhu P, Liu J, Liu W, et al. Current understanding of the pathophysiology of myocardial fibrosis and its quantitative assessment in heart failure. Front Physiol. 2017;8:238.

    Article  Google Scholar 

  83. Nikolov A, Popovski N. Extracellular matrix in heart disease: focus on circulating collagen type I and III derived peptides as biomarkers of myocardial fibrosis and their potential in the prognosis of heart failure: a concise review. Meta. 2022;12(4):297.

    CAS  Google Scholar 

  84. Olsen MH, Christensen MK, Wachtell K, Tuxen C, Fossum E, Bang LE, et al. Markers of collagen synthesis is related to blood pressure and vascular hypertrophy: a LIFE substudy. J Hum Hypertens. 2005;19(4):301–7.

    Article  CAS  Google Scholar 

  85. Laviades C, Varo N, Fernández J, Mayor G, Gil MJ, Monreal I, et al. Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation. 1998;98(6):535–40.

    Article  CAS  Google Scholar 

  86. Lindsay MM, Maxwell P, Dunn FG. TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension. 2002;40(2):136–41.

    Article  CAS  Google Scholar 

  87. Plaksej R, Kosmala W, Frantz S, Herrmann S, Niemann M, Störk S, et al. Relation of circulating markers of fibrosis and progression of left and right ventricular dysfunction in hypertensive patients with heart failure. J Hypertens. 2009;27(12):2483–91.

    Article  CAS  Google Scholar 

  88. dos Santos MC, Serejo F, Alcântara P, Ramalhinho V, Braz NJ. Procollagen type III amino terminal peptide and myocardial fibrosis: a study in hypertensive patients with and without left ventricular hypertrophy. Rev Port Cardiol. 2015;34(5):309–14.

    Article  Google Scholar 

  89. Zhang Z-Y, Ravassa S, Yang W-Y, Petit T, Pejchinovski M, Zürbig P, et al. Diastolic left ventricular function in relation to urinary and serum collagen biomarkers in a general population. PLoS One. 2016;11(12):e0167582.

    Article  Google Scholar 

  90. Duprez DA, Gross MD, Kizer JR, Ix JH, Hundley WG, Jacobs DR. Predictive value of collagen biomarkers for heart failure with and without preserved ejection fraction: MESA (multi-ethnic study of atherosclerosis). J Am Heart Assoc. 2018;7(5):e007885.

    Article  Google Scholar 

  91. Pareek M, Bhatt DL, Vaduganathan M, Biering-Sørensen T, Qamar A, Diederichsen AC, et al. Single and multiple cardiovascular biomarkers in subjects without a previous cardiovascular event. Eur J Prev Cardiol. 2017;24(15):1648–59.

    Article  Google Scholar 

  92. Querejeta R, Varo N, López B, Larman M, Artiñano E, Etayo JC, et al. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation. 2000;101(14):1729–35.

    Article  CAS  Google Scholar 

  93. Packer M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol. 1992;20(1):248–54.

    Article  CAS  Google Scholar 

  94. Funke-Kaiser A, Havulinna AS, Zeller T, Appelbaum S, Jousilahti P, Vartiainen E, et al. Predictive value of midregional pro-adrenomedullin compared to natriuretic peptides for incident cardiovascular disease and heart failure in the population-based FINRISK 1997 cohort. Ann Med. 2014;46(3):155–62.

    Article  CAS  Google Scholar 

  95. Schill F, Timpka S, Nilsson PM, Melander O, Enhörning S. Copeptin as a predictive marker of incident heart failure. ESC Heart Fail. 2021;8(4):3180–8.

    Article  Google Scholar 

  96. Cauwenberghs N, Sabovčik F, Magnus A, Haddad F, Kuznetsova T. Proteomic profiling for detection of early-stage heart failure in the community. ESC Heart Fail. 2021;8:2928.

    Article  Google Scholar 

  97. Wu J, Dong E, Zhang Y, Xiao H. The role of the inflammasome in heart failure. Front Physiol. 2021;12:709703.

    Article  Google Scholar 

  98. Kardys I, Knetsch AM, Bleumink GS, Deckers JW, Hofman A, Stricker BHC, et al. C-reactive protein and risk of heart failure. The Rotterdam Study. Am Heart J. 2006;152(3):514–20.

    Article  CAS  Google Scholar 

  99. Anand IS, Latini R, Florea VG, Kuskowski MA, Rector T, Masson S, et al. C-reactive protein in heart failure. Circulation. 2005;112(10):1428–34.

    Article  CAS  Google Scholar 

  100. Cauwenberghs N, Sabovčik F, Vandenabeele E, Kobayashi Y, Haddad F, Budts W, et al. Subclinical heart dysfunction in relation to metabolic and inflammatory markers: a community-based study. Am J Hypertens. 2020;34:46–55.

    Article  Google Scholar 

  101. Chia YC, Kieneker LM, van Hassel G, Binnenmars SH, Nolte IM, van Zanden JJ, et al. Interleukin 6 and development of heart failure with preserved ejection fraction in the general population. J Am Heart Assoc. 2021;10(11):e018549.

    Article  CAS  Google Scholar 

  102. Kuznetsova T, Haddad F, Knez J, Rosenberg-Hasson Y, Sung J, Cauwenberghs N, et al. Cytokines profile in hypertensive patients with left ventricular remodeling and dysfunction. J Am Soc Hypertens. 2015;9(12):975–84.

    Article  CAS  Google Scholar 

  103. Xue H, Fu Z, Chen Y, Xing Y, Liu J, Zhu H, et al. The association of growth differentiation factor-15 with left ventricular hypertrophy in hypertensive patients. PLoS One. 2012;7(10):e46534.

    Article  CAS  Google Scholar 

  104. Wesseling M, Poel JHC, Jager SCA. Growth differentiation factor 15 in adverse cardiac remodelling: from biomarker to causal player. ESC Heart Fail. 2020;7(4):1488–501.

    Article  Google Scholar 

  105. Ndrepepa G. Myeloperoxidase – a bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta. 2019;493:36–51.

    Article  CAS  Google Scholar 

  106. von Bibra H, Paulus W, St. John Sutton M. Cardiometabolic syndrome and increased risk of heart failure. Curr Heart Fail Rep. 2016;13(5):219–29.

    Article  Google Scholar 

  107. Cauwenberghs N, Knez J, Thijs L, Haddad F, Vanassche T, Yang W-Y, et al. Relation of insulin resistance to longitudinal changes in left ventricular structure and function in a general population. J Am Heart Assoc. 2018;7(7):e008315.

    Article  Google Scholar 

  108. Han X, Zhang S, Chen Z, Adhikari BK, Zhang Y, Zhang J, et al. Cardiac biomarkers of heart failure in chronic kidney disease. Clin Chim Acta. 2020;510:298–310.

    Article  CAS  Google Scholar 

  109. Kottgen A, Russell SD, Loehr LR, Crainiceanu CM, Rosamond WD, Chang PP, et al. Reduced kidney function as a risk factor for incident heart failure: the atherosclerosis risk in communities (ARIC) study. J Am Soc Nephrol. 2007;18(4):1307–15.

    Article  CAS  Google Scholar 

  110. Mettimano M, Specchia ML, Migneco A, Savi L. Microalbuminuria as a marker of cardiac damage in essential hypertension. Eur Rev Med Pharmacol Sci. 2001;5(1):31–6.

    CAS  Google Scholar 

  111. Catena C, Colussi G, Fedrizzi S, Sechi LA. Association of a prothrombotic state with left-ventricular diastolic dysfunction in hypertension. J Hypertens. 2013;31(10):2077–84.

    Article  CAS  Google Scholar 

  112. Dhingra R, Gona P, Wang TJ, Fox CS, D’Agostino RBS, Vasan RS. Serum gamma-glutamyl transferase and risk of heart failure in the community. Arterioscler Thromb Vasc Biol. 2010;30(9):1855–60.

    Article  CAS  Google Scholar 

  113. Silvestre OM, Gonçalves A, Nadruz W, Claggett B, Couper D, Eckfeldt JH, et al. Ferritin levels and risk of heart failure—the atherosclerosis risk in communities study. Eur J Heart Fail. 2017;19(3):340–7.

    Article  CAS  Google Scholar 

  114. Castiglione V, Aimo A, Vergaro G, Saccaro L, Passino C, Emdin M. Biomarkers for the diagnosis and management of heart failure. Heart Fail Rev. 2022;27(2):625–43.

    Article  CAS  Google Scholar 

  115. Velagaleti RS, Gona P, Larson MG, Wang TJ, Levy D, Benjamin EJ, et al. Multimarker approach for the prediction of heart failure incidence in the community. Circulation. 2010;122(17):1700–6.

    Article  Google Scholar 

  116. Brouwers FP, van Gilst WH, Damman K, van den Berg MP, Gansevoort RT, Bakker SJL, et al. Clinical risk stratification optimizes value of biomarkers to predict new-onset heart failure in a community-based cohort. Circ Heart Fail. 2014;7(5):723–31.

    Article  CAS  Google Scholar 

  117. Wik L, Nordberg N, Broberg J, Björkesten J, Assarsson E, Henriksson S, et al. Proximity extension assay in combination with next-generation sequencing for high-throughput proteome-wide analysis. Mol Cell Proteomics. 2021;20:100168.

    Article  CAS  Google Scholar 

  118. Stenemo M, Nowak C, Byberg L, Sundström J, Giedraitis V, Lind L, et al. Circulating proteins as predictors of incident heart failure in the elderly. Eur J Heart Fail. 2018;20(1):55–62.

    Article  CAS  Google Scholar 

  119. Egerstedt A, Berntsson J, Smith ML, Gidlöf O, Nilsson R, Benson M, et al. Profiling of the plasma proteome across different stages of human heart failure. Nat Commun. 2019;10(1):5830.

    Article  CAS  Google Scholar 

  120. Kuznetsova T, Mischak H, Mullen W, Staessen JA. Urinary proteome analysis in hypertensive patients with left ventricular diastolic dysfunction. Eur Heart J. 2012;33(18):2342–50.

    Article  CAS  Google Scholar 

  121. Ferreira JP, Verdonschot J, Collier T, Wang P, Pizard A, Bär C, et al. Proteomic bioprofiles and mechanistic pathways of progression to heart failure. Circ Heart Fail. 2019;12(5):e005897.

    Article  CAS  Google Scholar 

  122. Bayes-Genis A, Liu PP, Lanfear DE, de Boer RA, González A, Thum T, et al. Omics phenotyping in heart failure: the next frontier. Eur Heart J. 2020;41(36):3477–84.

    Article  CAS  Google Scholar 

  123. Arnett DK, Claas SA. Omics of blood pressure and hypertension. Circ Res. 2018;122(10):1409–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Cauwenberghs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cauwenberghs, N. (2023). Cardiac Biomarkers in the Progression to Heart Failure in Hypertension. In: Dorobantu, M., Voicu, V., Grassi, G., Agabiti-Rosei, E., Mancia, G. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-39315-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39315-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39314-3

  • Online ISBN: 978-3-031-39315-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics