Skip to main content

Left Ventricular Diastolic Dysfunction

  • Chapter
  • First Online:
Hypertension and Heart Failure

Abstract

Left ventricular (LV) diastolic dysfunction is a common condition in hypertensive patients, characterized by impaired relaxation and compliance of the LV, eventually leading to heart failure (HF). Chronic hypertension causes elevated LV end-diastolic pressure and LV hypertrophy, contributing to diastolic dysfunction. Neurohormonal activation and genetic factors also influence its onset. Diagnosis of diastolic dysfunction involves noninvasive and invasive approaches. Transthoracic echocardiography is commonly used, assessing factors like transmitral flow velocities, mitral annulus deformation, left atrial dimensions, and estimation of pulmonary artery pressures. Speckle-tracking echocardiography detects diastolic dysfunction early by evaluating strain and strain rate. Nuclear cardiology and cardiac magnetic resonance provide additional indices, but their clinical use is limited due to accessibility and processing time. Invasive evaluation through cardiac catheterization is the gold standard, allowing direct measurement of LV end-diastolic pressure and pulmonary capillary wedge pressure. Although noninvasive tests have extensively replaced invasive procedures in clinical practice, cardiac catheterization remains valuable in cases with inconclusive findings or when a differential diagnosis is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

CMR:

Cardiac magnetic resonance

dPAP:

Diastolic pulmonary artery pressure

EDV:

End-diastolic volume

GLS:

Global longitudinal strain

HF:

Heart failure

HFpEF:

Heart failure with preserved ejection fraction

HFrEF:

Heart failure with preserved ejection fraction

HR:

Heart rate

IVRT:

Isovolumetric relaxation time

LA:

Left atrium

LAVi:

Left atrial volume index

LIFE:

Losartan intervention for end point reduction in hypertension

LV:

Left ventricle

LVEDP:

Left ventricular end-diastolic pressure

LVEF:

Left ventricular ejection fraction

LVH:

Left ventricular hypertrophy

mPAP:

Mean pulmonary artery pressure

PCWP:

Pulmonary capillary wedge pressure

PFR:

Peak filling rate

PV:

Pulmonary vein

SERCA:

Sarco/endoplasmic reticulum calcium ATPase

sPAP:

Systolic pulmonary artery pressure

SR:

Strain rate

STE:

Speckle-tracking echocardiography

TPFR:

Time to peak filling rate

TR:

Tricuspid regurgitation

TTE:

Transthoracic echocardiography

References

  1. Leite-Moreira AF. Current perspectives in diastolic dysfunction and diastolic heart failure. Heart Br Card Soc. 2006;92(5):712–8. https://doi.org/10.1136/hrt.2005.062950.

    Article  Google Scholar 

  2. McDonagh TA, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726. https://doi.org/10.1093/eurheartj/ehab368.

    Article  CAS  Google Scholar 

  3. Kasiakogias A, et al. Hypertension and heart failure with preserved ejection fraction: position paper by the European Society of Hypertension. J Hypertens. 2021;39(8):1522–45. https://doi.org/10.1097/HJH.0000000000002910.

    Article  CAS  Google Scholar 

  4. Messerli FH, Rimoldi SF, Bangalore S. The transition from hypertension to heart failure: contemporary update. JACC Heart Fail. 2017;5(8):543–51. https://doi.org/10.1016/j.jchf.2017.04.012.

    Article  Google Scholar 

  5. Kannel WB, Gordon T, Offutt D. Left ventricular hypertrophy by electrocardiogram. Prevalence, incidence, and mortality in the Framingham study. Ann Intern Med. 1969;71(1):89–105. https://doi.org/10.7326/0003-4819-71-1-89.

    Article  CAS  Google Scholar 

  6. Heckbert SR, et al. Traditional cardiovascular risk factors in relation to left ventricular mass, volume, and systolic function by cardiac magnetic resonance imaging: the Multiethnic Study of Atherosclerosis. J Am Coll Cardiol. 2006;48(11):2285–92. https://doi.org/10.1016/j.jacc.2006.03.072.

    Article  Google Scholar 

  7. Devereux RB, Pickering TG, Alderman MH, Chien S, Borer JS, Laragh JH. Left ventricular hypertrophy in hypertension. Prevalence and relationship to pathophysiologic variables. Hypertension. 1987;9(2 Pt 2):53–60. https://doi.org/10.1161/01.hyp.9.2_pt_2.ii53.

    Article  Google Scholar 

  8. Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens. 1987;5(1):93–8. https://doi.org/10.1097/00004872-198702000-00013.

    Article  CAS  Google Scholar 

  9. Santos ABS, et al. Prehypertension is associated with abnormalities of cardiac structure and function in the atherosclerosis risk in communities study. Am J Hypertens. 2016;29(5):568–74. https://doi.org/10.1093/ajh/hpv156.

    Article  CAS  Google Scholar 

  10. Galderisi M, et al. Differences of myocardial systolic deformation and correlates of diastolic function in competitive rowers and young hypertensives: a speckle-tracking echocardiography study. J Am Soc Echocardiogr. 2010;23(11):1190–8. https://doi.org/10.1016/j.echo.2010.07.010.

    Article  Google Scholar 

  11. de Simone G, Gottdiener JS, Chinali M, Maurer MS. Left ventricular mass predicts heart failure not related to previous myocardial infarction: the Cardiovascular Health Study. Eur Heart J. 2008;29(6):741–7. https://doi.org/10.1093/eurheartj/ehm605.

    Article  Google Scholar 

  12. Neeland IJ, et al. Biomarkers of chronic cardiac injury and hemodynamic stress identify a malignant phenotype of left ventricular hypertrophy in the general population. J Am Coll Cardiol. 2013;61(2):187–95. https://doi.org/10.1016/j.jacc.2012.10.012.

    Article  CAS  Google Scholar 

  13. Seliger SL, et al. Older adults, “malignant” left ventricular hypertrophy, and associated cardiac-specific biomarker phenotypes to identify the differential risk of new-onset reduced versus preserved ejection fraction heart failure: CHS (Cardiovascular Health Study). JACC Heart Fail. 2015;3(6):445–55. https://doi.org/10.1016/j.jchf.2014.12.018.

    Article  Google Scholar 

  14. Brutsaert DL, Sys SU. Relaxation and diastole of the heart. Physiol Rev. 1989;69(4):1228–315. https://doi.org/10.1152/physrev.1989.69.4.1228.

    Article  CAS  Google Scholar 

  15. Angeja BG, Grossman W. Evaluation and management of diastolic heart failure. Circulation. 2003;107(5):659–63. https://doi.org/10.1161/01.cir.0000053948.10914.49.

    Article  Google Scholar 

  16. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: part II: causal mechanisms and treatment. Circulation. 2002;105(12):1503–8. https://doi.org/10.1161/hc1202.105290.

    Article  Google Scholar 

  17. Leite-Moreira AF, Bras-Silva C, Pedrosa CA, Rocha-Sousa AA. ET-1 increases distensibility of acutely loaded myocardium: a novel ETA and Na+/H+ exchanger-mediated effect. Am J Physiol Heart Circ Physiol. 2003;284(4):1332–9. https://doi.org/10.1152/ajpheart.00715.2002.

    Article  Google Scholar 

  18. Kass DA, Bronzwaer JGF, Paulus WJ. What mechanisms underlie diastolic dysfunction in heart failure? Circ Res. 2004;94(12):1533–42. https://doi.org/10.1161/01.RES.0000129254.25507.d6.

    Article  CAS  Google Scholar 

  19. Leite-Moreira AF, Correia-Pinto J. Load as an acute determinant of end-diastolic pressure-volume relation. Am J Physiol Heart Circ Physiol. 2001;280(1):51–9. https://doi.org/10.1152/ajpheart.2001.280.1.H51.

    Article  Google Scholar 

  20. Gandhi SK, et al. The pathogenesis of acute pulmonary edema associated with hypertension. N Engl J Med. 2001;344(1):17–22. https://doi.org/10.1056/NEJM200101043440103.

    Article  CAS  Google Scholar 

  21. Leite-Moreira AF, Gillebert TC. The physiology of left ventricular pressure fall. Rev Port Cardiol. 2000;19(10):1015–21.

    CAS  Google Scholar 

  22. Izzo JL, Gradman AH. Mechanisms and management of hypertensive heart disease: from left ventricular hypertrophy to heart failure. Med Clin North Am. 2004;88(5):1257–71. https://doi.org/10.1016/j.mcna.2004.06.002.

    Article  Google Scholar 

  23. Mitchell GF, et al. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation. 2003;108(13):1592–8. https://doi.org/10.1161/01.CIR.0000093435.04334.1F.

    Article  Google Scholar 

  24. Laks MM, Morady F. Norepinephrine--the myocardial hypertrophy hormone? Am Heart J. 1976;91(5):674–5. https://doi.org/10.1016/s0002-8703(76)80156-1.

    Article  CAS  Google Scholar 

  25. Waeber B, Brunner HR. Cardiovascular hypertrophy: role of angiotensin II and bradykinin. J Cardiovasc Pharmacol. 1996;27(2):36–40. https://doi.org/10.1097/00005344-199600002-00008.

    Article  Google Scholar 

  26. Ichihara S, Senbonmatsu T, Price E, Ichiki T, Gaffney FA, Inagami T. Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation. 2001;104(3):346–51. https://doi.org/10.1161/01.cir.104.3.346.

    Article  CAS  Google Scholar 

  27. Schmieder RE, Schlaich MP. Comparison of therapeutic studies on regression of left ventricular hypertrophy. Adv Exp Med Biol. 1997;432:191–8. https://doi.org/10.1007/978-1-4615-5385-4_21.

    Article  CAS  Google Scholar 

  28. Sun Y, Weber KT. Cardiac remodelling by fibrous tissue: role of local factors and circulating hormones. Ann Med. 1998;30(Suppl 1):3–8.

    CAS  Google Scholar 

  29. Weber KT. Metabolic responses of extracellular matrix in tissue repair. Ann Med. 1997;29(4):333–8. https://doi.org/10.3109/07853899708999357.

    Article  CAS  Google Scholar 

  30. Galderisi M, Celentano A, Garofalo M, Tammaro P, Crivaro M, de Divitiis O. Parental left ventricular hypertrophy predicts Doppler-derived diastolic filling in young offspring of hypertensive subjects. J Hypertens. 1993;11(5):S76–7.

    Article  CAS  Google Scholar 

  31. Arnett DK, de Fuentes L, Broeckel U. Genes for left ventricular hypertrophy. Curr Hypertens Rep. 2004;6(1):36–41. https://doi.org/10.1007/s11906-004-0009-5.

    Article  Google Scholar 

  32. Arnett DK, et al. Sibling correlation of left ventricular mass and geometry in hypertensive African Americans and whites: the HyperGEN study. Hypertension Genetic Epidemiology Network. Am J Hypertens. 2001;14(12):1226–30. https://doi.org/10.1016/s0895-7061(01)02200-2.

    Article  CAS  Google Scholar 

  33. Arnett DK, et al. Linkage of left ventricular contractility to chromosome 11 in humans: The HyperGEN Study. Hypertension. 2001;38(4):767–72. https://doi.org/10.1161/hy1001.092650.

    Article  CAS  Google Scholar 

  34. Balaney B, et al. Invasive validation of the echocardiographic assessment of left ventricular filling pressures using the 2016 diastolic guidelines: head-to-head comparison with the 2009 guidelines. J Am Soc Echocardiogr. 2018;31(1):79–88. https://doi.org/10.1016/J.ECHO.2017.09.002.

    Article  Google Scholar 

  35. Kass DA. Assessment of diastolic dysfunction. Invasive modalities. Cardiol Clin. 2000;18(3):571–86. https://doi.org/10.1016/S0733-8651(05)70162-4.

    Article  CAS  Google Scholar 

  36. Paulus WJ, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28(20):2539–50. https://doi.org/10.1093/EURHEARTJ/EHM037.

    Article  Google Scholar 

  37. Dorfs S, et al. Pulmonary capillary wedge pressure during exercise and long-term mortality in patients with suspected heart failure with preserved ejection fraction. Eur Heart J. 2014;35(44):3103–12. https://doi.org/10.1093/EURHEARTJ/EHU315.

    Article  CAS  Google Scholar 

  38. Ha JW, Andersen OS, Smiseth OA. Diastolic stress test: invasive and noninvasive testing. JACC Cardiovasc Imaging. 2020;13(1):272–82. https://doi.org/10.1016/J.JCMG.2019.01.037.

    Article  Google Scholar 

  39. Smiseth OA, et al. Multimodality imaging in patients with heart failure and preserved ejection fraction: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2022;23(2):e34–61. https://doi.org/10.1093/ehjci/jeab154.

    Article  Google Scholar 

  40. Borlaug BA, Nishimura RA, Sorajja P, Lam CSP, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3(5):588–95. https://doi.org/10.1161/CIRCHEARTFAILURE.109.930701.

    Article  Google Scholar 

  41. Ogilvie LM, et al. Hemodynamic assessment of diastolic function for experimental models. Am J Physiol Heart Circ Physiol. 2020;318(5):H1139–58. https://doi.org/10.1152/AJPHEART.00705.2019.

    Article  CAS  Google Scholar 

  42. Pak PH, Maughan WL, Baughman KL, Kass DA. Marked discordance between dynamic and passive diastolic pressure-volume relations in idiopathic hypertrophic cardiomyopathy. Circulation. 1996;94(1):52–60. https://doi.org/10.1161/01.CIR.94.1.52.

    Article  CAS  Google Scholar 

  43. Dauterman K, et al. Contribution of external forces to left ventricular diastolic pressure. Implications for the clinical use of the Starling law. Ann Intern Med. 1995;122(10):737–42. https://doi.org/10.7326/0003-4819-122-10-199505150-00001.

    Article  CAS  Google Scholar 

  44. Hirota Y. A clinical study of left ventricular relaxation. Circulation. 1980;62(4):756–63. https://doi.org/10.1161/01.CIR.62.4.756.

    Article  CAS  Google Scholar 

  45. Weiss JL, Frederiksen JW, Weisfeldt ML. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest. 1976;58(3):751. https://doi.org/10.1172/JCI108522.

    Article  CAS  Google Scholar 

  46. Nagueh SF, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277–314. https://doi.org/10.1016/J.ECHO.2016.01.011.

    Article  Google Scholar 

  47. Thomas JD, Weyman AE. Echocardiographic Doppler evaluation of left ventricular diastolic function: physics and physiology. Circulation. 1991;84(3):977–90. https://doi.org/10.1161/01.CIR.84.3.977.

    Article  CAS  Google Scholar 

  48. Mitter SS, Shah SJ, Thomas JD. A test in context: E/A and E/e′ to assess diastolic dysfunction and LV filling pressure. J Am Coll Cardiol. 2017;69(11):1451–64. https://doi.org/10.1016/J.JACC.2016.12.037.

    Article  Google Scholar 

  49. Choong CY, Abascal VM, Thomas JD, Luis Guerrero J, McGlew S, Weyman EAE. Combined influence of ventricular loading and relaxation on the transmitral flow velocity profile in dogs measured by Doppler echocardiography. Circulation. 1988;78(3):672–83. https://doi.org/10.1161/01.CIR.78.3.672.

    Article  CAS  Google Scholar 

  50. Bryg RJ, Williams GA, Labovitz AJ. Effect of aging on left ventricular diastolic filling in normal subjects. Am J Cardiol. 1987;59(9):971–4. https://doi.org/10.1016/0002-9149(87)91136-2.

    Article  CAS  Google Scholar 

  51. Bryg RJ, Pearson AC, Williams GA, Labovitz AJ. Left ventricular systolic and diastolic flow abnormalities determined by doppler echocardiography in obstructive hypertrophic cardiomyopathy. Am J Cardiol. 1987;59(9):925–31. https://doi.org/10.1016/0002-9149(87)91127-1.

    Article  CAS  Google Scholar 

  52. Whalley GA, et al. Pseudonormal mitral filling pattern predicts hospital re-admission in patients with congestive heart failure. J Am Coll Cardiol. 2002;39(11):1787–95. https://doi.org/10.1016/S0735-1097(02)01868-5.

    Article  Google Scholar 

  53. Nijland F, Kamp O, Karreman AJP, Van Eenige MJ, Visser CA. Prognostic implications of restrictive left ventricular filling in acute myocardial infarction: a Serial Doppler Echocardiographic Study. J Am Coll Cardiol. 1997;30(7):1618–24. https://doi.org/10.1016/S0735-1097(97)00369-0.

    Article  CAS  Google Scholar 

  54. Wijbenga AAM, et al. Potentials and limitations of the valsalva maneuver as a method of differentiating between normal and pseudonormal left ventricular filling patterns. Am J Cardiol. 1999;84(1):76–81. https://doi.org/10.1016/S0002-9149(99)00195-2.

    Article  CAS  Google Scholar 

  55. Giannuzzi P, et al. Independent and incremental prognostic value of doppler-derived mitral deceleration time of early filling in both symptomatic and asymptomatic patients with left ventricular dysfunction. J Am Coll Cardiol. 1996;28(2):383–90. https://doi.org/10.1016/0735-1097(96)00163-5.

    Article  CAS  Google Scholar 

  56. Lam CSP, Han L, Ha JW, Oh JK, Ling LH. The mitral L wave: a marker of pseudonormal filling and predictor of heart failure in patients with left ventricular hypertrophy. J Am Soc Echocardiogr. 2005;18(4):336–41. https://doi.org/10.1016/J.ECHO.2004.10.019.

    Article  Google Scholar 

  57. Nagueh SF, Kopelen HA, Quiñones MA. Assessment of left ventricular filling pressures by Doppler in the presence of atrial fibrillation. Circulation. 1996;94(9):2138–45. https://doi.org/10.1161/01.CIR.94.9.2138.

    Article  CAS  Google Scholar 

  58. Opdahl A, et al. Determinants of left ventricular early-diastolic lengthening velocity independent contributions from left ventricular relaxation, restoring forces, and lengthening load. Circulation. 2009;119(19):2578–86. https://doi.org/10.1161/CIRCULATIONAHA.108.791681.

    Article  Google Scholar 

  59. Nagueh SF, Sun H, Kopelen HA, Middleton KJ, Khoury DS. Hemodynamic determinants of the mitral annulus diastolic velocities by tissue Doppler. J Am Coll Cardiol. 2001;37(1):278–85. https://doi.org/10.1016/S0735-1097(00)01056-1.

    Article  CAS  Google Scholar 

  60. Nagueh SF, et al. Echocardiographic evaluation of hemodynamics in patients with decompensated systolic heart failure. Circ Cardiovasc Imaging. 2011;4(3):220–7. https://doi.org/10.1161/CIRCIMAGING.111.963496.

    Article  Google Scholar 

  61. Sharifov OF, Schiros CG, Aban I, Denney TS, Gupta H. Diagnostic accuracy of tissue Doppler index E/e’ for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: a systematic review and meta-analysis. J Am Heart Assoc. 2016;5:1. https://doi.org/10.1161/JAHA.115.002530.

    Article  Google Scholar 

  62. Lester SJ, Ryan EW, Schiller NB, Foster E. Best method in clinical practice and in research studies to determine left atrial size. Am J Cardiol. 1999;84(7):829–32. https://doi.org/10.1016/S0002-9149(99)00446-4.

    Article  CAS  Google Scholar 

  63. Lim TK, Ashrafian H, Dwivedi G, Collinson PO, Senior R. Increased left atrial volume index is an independent predictor of raised serum natriuretic peptide in patients with suspected heart failure but normal left ventricular ejection fraction: implication for diagnosis of diastolic heart failure. Eur J Heart Fail. 2006;8(1):38–45. https://doi.org/10.1016/J.EJHEART.2005.05.008.

    Article  CAS  Google Scholar 

  64. Beinart R, et al. Long-term prognostic significance of left atrial volume in acute myocardial infarction. J Am Coll Cardiol. 2004;44(2):327–34. https://doi.org/10.1016/J.JACC.2004.03.062.

    Article  Google Scholar 

  65. Caballero L, et al. Echocardiographic reference ranges for normal cardiac Doppler data: results from the NORRE Study. Eur Heart J Cardiovasc Imaging. 2015;16(9):1031–41. https://doi.org/10.1093/EHJCI/JEV083.

    Article  Google Scholar 

  66. Morris DA, et al. Potential usefulness and clinical relevance of adding left atrial strain to left atrial volume index in the detection of left ventricular diastolic dysfunction. JACC Cardiovasc Imaging. 2018;11(10):1405–15. https://doi.org/10.1016/J.JCMG.2017.07.029.

    Article  Google Scholar 

  67. Buffle E, et al. Added value of pulmonary venous flow Doppler assessment in patients with preserved ejection fraction and its contribution to the diastolic grading paradigm. Eur Heart J Cardiovasc Imaging. 2015;16(11):1191–7. https://doi.org/10.1093/EHJCI/JEV126.

    Article  Google Scholar 

  68. Fadel BM, et al. Spectral Doppler interrogation of the pulmonary veins for the diagnosis of cardiac disorders: a comprehensive review. J Am Soc Echocardiogr. 2021;34(3):223–36. https://doi.org/10.1016/J.ECHO.2020.09.012.

    Article  Google Scholar 

  69. Parasuraman S, et al. Assessment of pulmonary artery pressure by echocardiography—a comprehensive review. Int J Cardiol Heart Vasc. 2016;12:45. https://doi.org/10.1016/J.IJCHA.2016.05.011.

    Article  Google Scholar 

  70. Galiè N, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2015;46(4):903–75. https://doi.org/10.1183/13993003.01032-2015.

    Article  CAS  Google Scholar 

  71. Masuyama T, Kodama K, Kitabatake A, Sato H, Nanto S, Inoue M. Continuous-wave Doppler echocardiographic detection of pulmonary regurgitation and its application to noninvasive estimation of pulmonary artery pressure. Circulation. 1986;74(3):484–92. https://doi.org/10.1161/01.CIR.74.3.484.

    Article  CAS  Google Scholar 

  72. Chubuchny V, et al. A novel echocardiographic method for estimation of pulmonary artery wedge pressure and pulmonary vascular resistance. ESC Heart Fail. 2021;8(2):1216–29. https://doi.org/10.1002/ehf2.13183.

    Article  Google Scholar 

  73. Barbier P, Grimaldi A, Alimento M, Berna G, Guazzi MD. Echocardiographic determinants of mitral early flow propagation velocity. Am J Cardiol. 2002;90(6):613–9. https://doi.org/10.1016/S0002-9149(02)02565-1.

    Article  Google Scholar 

  74. Nakatani S, Yoshitomi H, Wada K, Beppu S, Nagata S, Miyatake K. Noninvasive estimation of left ventricular end-diastolic pressure using transthoracic Doppler-determined pulmonary venous atrial flow reversal. Am J Cardiol. 1994;73(13):1017–8. https://doi.org/10.1016/0002-9149(94)90162-7.

    Article  CAS  Google Scholar 

  75. Rohde LE, Palombini DV, Polanczyk CA, Goldraich LA, Clausell N. A hemodynamically oriented echocardiography-based strategy in the treatment of congestive heart failure. J Card Fail. 2007;13(8):618–25. https://doi.org/10.1016/J.CARDFAIL.2007.05.003.

    Article  Google Scholar 

  76. Prasad SB, Holland DJ, Atherton JJ, Whalley EG. New diastology guidelines: evolution, validation and impact on clinical practice. Heart Lung Circ. 2019;28(9):1411–20. https://doi.org/10.1016/j.hlc.2019.03.013.

    Article  Google Scholar 

  77. van de Bovenkamp AA, et al. Validation of the 2016 ASE/EACVI guideline for diastolic dysfunction in patients with unexplained dyspnea and a preserved left ventricular ejection fraction. J Am Heart Assoc. 2021;10(18):21165. https://doi.org/10.1161/JAHA.121.021165.

    Article  Google Scholar 

  78. Smiseth OA, Baron T, Marino PN, Marwick TH, Flachskampf FA. Imaging of the left atrium: pathophysiology insights and clinical utility. Eur Heart J Cardiovasc Imaging. 2021;23(1):2–13. https://doi.org/10.1093/EHJCI/JEAB191.

    Article  Google Scholar 

  79. Voigt J-U, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2015;16(1):1–11. https://doi.org/10.1093/ehjci/jeu184.

    Article  CAS  Google Scholar 

  80. Lang RM, et al. Multimodality imaging of diseases of the thoracic aorta in adults: from the American Society. Eur Heart J Cardiovasc Imaging. 2015;28(2):119–82. https://doi.org/10.1093/ehjci/jev014.

    Article  Google Scholar 

  81. Bendiab NST, et al. Factors associated with global longitudinal strain decline in hypertensive patients with normal left ventricular ejection fraction. Eur J Prev Cardiol. 2017;24(14):1463–72. https://doi.org/10.1177/2047487317721644.

    Article  Google Scholar 

  82. Wang J, Khoury DS, Thohan V, Torre-Amione G, Nagueh SF. Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation. 2007;115(11):1376–83. https://doi.org/10.1161/CIRCULATIONAHA.106.662882.

    Article  Google Scholar 

  83. Dokainish H, Sengupta R, Pillai M, Bobek J, Lakkis N. Usefulness of new diastolic strain and strain rate indexes for the estimation of left ventricular filling pressure. Am J Cardiol. 2008;101(10):1504–9. https://doi.org/10.1016/j.amjcard.2008.01.037.

    Article  Google Scholar 

  84. Meluzin J, et al. Estimation of left ventricular filling pressures by speckle tracking echocardiography in patients with idiopathic dilated cardiomyopathy. Eur J Echocardiogr. 2011;12(1):11–8. https://doi.org/10.1093/ejechocard/jeq088.

    Article  Google Scholar 

  85. Kimura K, et al. Speckle tracking global strain rate E/E′ predicts LV filling pressure more accurately than traditional tissue Doppler E/E′. Echocardiography. 2012;29(4):404–10. https://doi.org/10.1111/j.1540-8175.2011.01587.x.

    Article  Google Scholar 

  86. Notomi Y, et al. Ventricular untwisting: a temporal link between left ventricular relaxation and suction. Am J Physiol Heart Circ Physiol. 2008;294(1):H505–13. https://doi.org/10.1152/ajpheart.00975.2007.

    Article  CAS  Google Scholar 

  87. Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF. Left ventricular untwisting rate by speckle tracking echocardiography. Circulation. 2007;116(22):2580–6. https://doi.org/10.1161/CIRCULATIONAHA.107.706770.

    Article  Google Scholar 

  88. Cameli M, et al. Multicentric atrial strain comparison between two different modalities: MASCOT HIT study. Diagn Basel Switz. 2020;10(11):E946. https://doi.org/10.3390/diagnostics10110946.

    Article  Google Scholar 

  89. Wakami K, et al. Correlation between left ventricular end-diastolic pressure and peak left atrial wall strain during left ventricular systole. J Am Soc Echocardiogr. 2009;22(7):847–51. https://doi.org/10.1016/j.echo.2009.04.026.

    Article  Google Scholar 

  90. Kosmala W, Jellis CL, Marwick TH. Exercise limitation associated with asymptomatic left ventricular impairment: analogy with stage B heart failure. J Am Coll Cardiol. 2015;65(3):257–66. https://doi.org/10.1016/j.jacc.2014.10.044.

    Article  Google Scholar 

  91. Bonow RO. Radionuclide angiographic evaluation of left ventricular diastolic function. Circulation. 1991;84(3):208–15.

    Google Scholar 

  92. Akincioglu C, et al. Assessment of diastolic function using 16-frame 99mTc-sestamibi gated myocardial perfusion SPECT: normal values. J Nucl Med. 2005;46(7):1102–8.

    Google Scholar 

  93. Lee KJ, et al. Normalised radionuclide measures of left ventricular diastolic function. Eur J Nucl Med. 1989;15(3):123–7. https://doi.org/10.1007/BF00254623.

    Article  CAS  Google Scholar 

  94. Chamsi PMA, Zhan Y, Debs D, Shah DJ. CMR in the evaluation of diastolic dysfunction and phenotyping of HFpEF. JACC Cardiovasc Imaging. 2020;13:283–96. https://doi.org/10.1016/j.jcmg.2019.02.031.

    Article  Google Scholar 

  95. Barison A, Aimo A, Todiere G, Grigoratos C, Aquaro GD, Emdin M. Cardiovascular magnetic resonance for the diagnosis and management of heart failure with preserved ejection fraction. Heart Fail Rev. 2022;27(1):191–205. https://doi.org/10.1007/s10741-020-09998-w.

    Article  Google Scholar 

  96. Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JAC. LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging. 2012;5(8):837–48. https://doi.org/10.1016/j.jcmg.2012.06.003.

    Article  Google Scholar 

  97. Bacharova L, et al. Determinants of discrepancies in detection and comparison of the prognostic significance of left ventricular hypertrophy by electrocardiogram and cardiac magnetic resonance imaging. Am J Cardiol. 2015;115(4):515–22. https://doi.org/10.1016/j.amjcard.2014.11.037.

    Article  Google Scholar 

  98. Kawel-Boehm N, et al. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson. 2015;17(1):29. https://doi.org/10.1186/s12968-015-0111-7.

    Article  Google Scholar 

  99. Maceira AM, Cosín-Sales J, Roughton M, Prasad SK, Pennell DJ. Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12(1):65. https://doi.org/10.1186/1532-429X-12-65.

    Article  Google Scholar 

  100. Baggiano A, et al. Role of CMR mapping techniques in cardiac hypertrophic phenotype. Diagnostics. 2020;10(10):770. https://doi.org/10.3390/diagnostics10100770.

    Article  Google Scholar 

  101. Kawaji K, et al. Automated segmentation of routine clinical cardiac magnetic resonance imaging for assessment of left ventricular diastolic dysfunction. Circ Cardiovasc Imaging. 2009;2(6):476–84. https://doi.org/10.1161/CIRCIMAGING.109.879304.

    Article  Google Scholar 

  102. Rathi VK, et al. Routine evaluation of left ventricular diastolic function by cardiovascular magnetic resonance: a practical approach. J Cardiovasc Magn Reson. 2008;10(1):36. https://doi.org/10.1186/1532-429X-10-36.

    Article  Google Scholar 

  103. Buss SJ, et al. Classification of diastolic function with phase-contrast cardiac magnetic resonance imaging: validation with echocardiography and age-related reference values. Clin Res Cardiol. 2014;103(6):441–50. https://doi.org/10.1007/s00392-014-0669-3.

    Article  Google Scholar 

  104. Paelinck BP, et al. Feasibility of tissue magnetic resonance imaging: a pilot study in comparison with tissue Doppler imaging and invasive measurement. J Am Coll Cardiol. 2005;45(7):1109–16. https://doi.org/10.1016/j.jacc.2004.12.051.

    Article  Google Scholar 

  105. Yoneyama K, Venkatesh BA, Bluemke DA, McClelland RL, Lima JAC. Cardiovascular magnetic resonance in an adult human population: serial observations from the multi-ethnic study of atherosclerosis. J Cardiovasc Magn Reson. 2017;19(1):52. https://doi.org/10.1186/s12968-017-0367-1.

    Article  Google Scholar 

  106. Onishi T, et al. Global longitudinal strain and global circumferential strain by speckle-tracking echocardiography and feature-tracking cardiac magnetic resonance imaging: comparison with left ventricular ejection fraction. J Am Soc Echocardiogr. 2015;28(5):587–96. https://doi.org/10.1016/j.echo.2014.11.018.

    Article  Google Scholar 

  107. Wachtell K, et al. Prognostic significance of left ventricular diastolic dysfunction in patients with left ventricular hypertrophy and systemic hypertension (the LIFE Study). Am J Cardiol. 2010;106(7):999–1005. https://doi.org/10.1016/j.amjcard.2010.05.032.

    Article  Google Scholar 

  108. Peterson GE, et al. Relationship of left ventricular hypertrophy and diastolic function with cardiovascular and renal outcomes in African Americans with hypertensive chronic kidney disease. Hypertension. 2013;62(3):518–25. https://doi.org/10.1161/HYPERTENSIONAHA.111.00904.

    Article  CAS  Google Scholar 

  109. Schillaci G, et al. Prognostic significance of left ventricular diastolic dysfunction in essential hypertension. J Am Coll Cardiol. 2002;39(12):2005–11. https://doi.org/10.1016/s0735-1097(02)01896-x.

    Article  Google Scholar 

  110. Wang M, et al. Tissue Doppler imaging provides incremental prognostic value in patients with systemic hypertension and left ventricular hypertrophy. J Hypertens. 2005;23(1):183–91. https://doi.org/10.1097/00004872-200501000-00029.

    Article  Google Scholar 

  111. Sharp ASP, et al. Tissue Doppler E/E’ ratio is a powerful predictor of primary cardiac events in a hypertensive population: an ASCOT substudy. Eur Heart J. 2010;31(6):747–52. https://doi.org/10.1093/eurheartj/ehp498.

    Article  Google Scholar 

  112. Nadruz W, Shah AM, Solomon SD. Diastolic dysfunction and hypertension. Med Clin North Am. 2017;101(1):7–17. https://doi.org/10.1016/j.mcna.2016.08.013.

    Article  Google Scholar 

  113. Terpstra WF, et al. Long-term effects of amlodipine and lisinopril on left ventricular mass and diastolic function in elderly, previously untreated hypertensive patients: the ELVERA trial. J Hypertens. 2001;19(2):303–9. https://doi.org/10.1097/00004872-200102000-00018.

    Article  CAS  Google Scholar 

  114. Müller-Brunotte R, Kahan T, Malmqvist K, Ring M, Edner M. Tissue velocity echocardiography shows early improvement in diastolic function with irbesartan and atenolol therapy in patients with hypertensive left ventricular hypertrophy. Results form the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA). Am J Hypertens. 2006;19(9):927–36. https://doi.org/10.1016/j.amjhyper.2006.02.009.

    Article  CAS  Google Scholar 

  115. Solomon SD, et al. Effect of intensive versus standard blood pressure lowering on diastolic function in patients with uncontrolled hypertension and diastolic dysfunction. Hypertension. 2010;55(2):241–8. https://doi.org/10.1161/HYPERTENSIONAHA.109.138529.

    Article  CAS  Google Scholar 

  116. Tapp RJ, et al. Differential effects of antihypertensive treatment on left ventricular diastolic function: an ASCOT (Anglo-Scandinavian Cardiac Outcomes Trial) substudy. J Am Coll Cardiol. 2010;55(17):1875–81. https://doi.org/10.1016/j.jacc.2009.11.084.

    Article  Google Scholar 

  117. Hummel SL, et al. Low-sodium DASH diet improves diastolic function and ventricular-arterial coupling in hypertensive heart failure with preserved ejection fraction. Circ Heart Fail. 2013;6(6):1165–71. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000481.

    Article  CAS  Google Scholar 

  118. Carluccio E, et al. Effect of revascularizing viable myocardium on left ventricular diastolic function in patients with ischaemic cardiomyopathy. Eur Heart J. 2009;30(12):1501–9. https://doi.org/10.1093/eurheartj/ehp125.

    Article  Google Scholar 

  119. Shah SJ, et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2016;134(1):73–90. https://doi.org/10.1161/CIRCULATIONAHA.116.021884.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Emdin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castiglione, V., Gentile, F., Aimo, A., Emdin, M. (2023). Left Ventricular Diastolic Dysfunction. In: Dorobantu, M., Voicu, V., Grassi, G., Agabiti-Rosei, E., Mancia, G. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-39315-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39315-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39314-3

  • Online ISBN: 978-3-031-39315-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics